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The effects of site exchange due to slow conformational changes
in rapidly rotating molecules in solution are examined in detail.
Significant gaps in the currently available theory are filled. The
effects of site exchange on the lineshape, decay of a simple spin-
echo, decay of the even echoes in a Carr—Purcell-Meiboom-Gill
(CPMG) pulse-sequence, and decay of the transverse magnetiza-
tion in a resonant spin-locking field are investigated. Both trajec-
tory and stochastic operator approaches are formulated and
shown to be completely equivalent whenever the dynamics of
population transfers among the inequivalent sites is governed by
either a stationary or a nonstationary Markov process. A nonsta-
tionary Markov process may result from Brownian dynamics (a
stationary Markov process) in a larger conformational space that
contains the subspace of inequivalent sites. A continuous Gaussian
exchange model is formulated in which a nucleus undergoes con-
tinuous one-dimensional motion in a harmonic potential well that
is located in a linear chemical shift gradient. The effects of this
Gaussian exchange model on the lineshape, simple spin-echo de-
cay, and decay of the even echoes of a CPMG pulse train are
treated rigorously via the trajectory approach. Compact analytical
expressions are obtained for the relevant correlation functions in
each case. The relevant decays are found to be exponential in the
very short time and long time limits, which are not necessarily
experimentally significant in any given case. In the fast exchange
limit the relevant decays are exponential at all times, and explicit
formulas are given for their decay rates. In the long time limit, all
discrete multisite models with the same intrinsic R; at every site
are shown to be completely equivalent to a continuous Gaussian
model with appropriate relaxation time and variance of the Lar-
mor frequency. The effects of this Gaussian exchange model on the
decay of the transverse magnetization in a resonant spin-locking
field are treated heuristically by a trajectory approach. The intrin-
sic contribution (RY,) of rapid rotations and dipole-dipole inter-
actions to relax the transverse magnetizations of two nuclei of the
same kind in the presence of a (nearly) resonant spin-locking field
is also derived and found to be practically the same as the intrinsic
contribution, R3, of those same rotations to the simple and CPMG
spin-echo decay rates and linewidth. Literature data for the line-
width, decay rate of the CPMG even spin-echoes, and R, decay
rate for the A9-H2 protons of adenines at the central TpA step in
the sequence, 5'-GCAGGTTTAAACCTCG-3', are analyzed using
the Gaussian exchange model to assess the time-scale and variance
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of the site exchange process as well as the intrinsic RS rate.
Although a single Gaussian exchange process with appropriate
parameters can fit these three A9-H2 data rather well, this partic-
ular “solution” cannot be reconciled with NMR relaxation data on
other protons in the same DNA molecule. Rather good agreement
with all of the observations is obtained by using a model of two
concurrent Gaussian exchange processes, whose relaxation times,
T = 7 and 460 ps, differ in time-scale by a factor of 65. The
insensitivity of R, in the presence of a fast site exchange process
to much slower concurrent site exchange processes is explicitly
demonstrated. Protocols for detecting and characterizing a second
slow site exchange process are suggested. © 1999 Academic Press

Key Words: site exchange; continuous Gaussian model; line-
shape; spin-echo decay; R, decay rate.

INTRODUCTION

In solution NMR, the molecular motions responsible for (i)
the shape and width of the spectrum, (ii) the decays of spi
echoes from either simple or complex pulse trains, and (iii) th
decay of the transverse magnetization in a resonant spi
locking field can be divided into two categories, namely rota
tional motions that are normally very rapid and transition:
between conformations wherein the Larmor frequency is a
tered. Such conformational transitions are called site exchan
processes and are typically much slower than the rotation
Even though rotations of a particular group in the molecul
may be slow in the molecular frame, perhaps because it pr
ceeds via a slow conformational change, it will be superpose
on the uniform (rigid-body) rotations and collective twisting
and bending deformations when viewed from the laborator
frame. Consequently, the resultant motion in the lab frame wi
proceed at least as rapidly as the combined uniform rotatiol
plus twisting and bending motion4,(2). Dipole—dipole, qua-
drupolar, and chemical shift anisotropy (CSA) relaxation al
require the reorientation of molecule-bound vectors or tenso
in the lab frame. Provided that the rotational motions ar
sufficiently rapid compared to the rates of decay of the initia
spin states, one may apply fast motion relaxation theory, fc
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example, Fermi’'s Golden Rule or the double commutator focentribution toR;, has been derived for the case when the twi
mula of Abragam 3). In that case, the relevant rate constantpins (I and S) are of different kinds and the spin-locking RI
for relaxation of various magnetizations, or spin-orders, can field is resonant with the | spin, but far off-resonance for the !
expressed in terms of spectral densities. These spectral desgin 6, 6). A corresponding treatment @&;, for the case of
ties are Fourier transforms of sums of correlation functions tfo identical spins that experience different environments wit
particular rotation functions of the Euler angles that orient ttetightly different Larmor frequencies, for which the RF power
relevant vectors or tensors in the lab frani2e). The contri- is nearly resonant with both spins, has evidently not bee
butions of cylindrically symmetric anisotropic uniform rota-obtained previously. Such a result, which is necessary to i
tions, collective twisting and bending, and various local angterpret spin-locking experiments on protons that are dipole
lar motions to the dipole—dipole, quadrupolar, and G84And relaxed by other protons, is derived in Appendix C.
R, relaxation rates in this fast motion limit were described Random variations of the dipole—dipole, quadrupolar, an
previously @). In solutions with an isotropic equilibrium state,CSA interactions that arise from rotational Brownian motions
the relevant correlation functions in every case relax corand which mix spin eigenstates of the Zeeman Hamiltoniat
pletely to zero, and exhibit a longest relaxation time that &re typically treated by second-order perturbation theory a
equal to the longest rotational relaxation timg)(of the cording to either Fermi’'s Golden Rule or Abragam’s double
molecule. Typicallyr, = 10° s. Consequently, molecularcommutator formulas. Consequently, those resultsAfof,,
motions that take place on a longer time-scale thaare not R3, andRy7, are valid only in the fast-motion limit, wherein the
significantly manifested in dipole—dipole, quadrupolar, or CSkngest rotational relaxation timg of the molecule is much
relaxation. Nevertheless, slow conformational transitions thass thanT; = 1/RJ. In contrast, random variations of the
cause the Larmor frequency to vary, specifically by altering thsotropic chemical shift, or Larmor frequency, due to site
isotropic part of the chemical shift tensor, may still be manexchanges, which do not mix the spin eigenstates of the Ze
fested in (i) the lineshape, (ii) the decay of a simple spin-echman Hamiltonian, can in principle be treated in a complet
(i) the decay of the even spin-echoes of a Carr—Purcel{ronperturbative) manner by the trajectory approach describ
Meiboom-Gill (CPMG) pulse train, and (iv) the decay of théelow, so the results are valid regardless of whether the e
transverse magnetization in a spin-locking field, albeit in éhange process is fast or slow. A stochastic operator, or mas
somewhat different manner. Our ultimate objective is to chagguation, approach for treating site exchange processes |
acterize insofar as possible both the rapid local angular moticalso been formulated and commonly used to calculate lin
and the slow conformational transitions in which a giveshapes and spin-echoes for both simple and CPMG pul
nucleus participates from measurements of the properties $@quences713. However, the validity of the stochastic op-
(i), and (iv) above together with an independent assessmeneoator approach has been substantiated onlyiricg-indepen-
the uniform rotational dynamics by time-resolved fluorescendentstochastic operators in the space of ifequivalent sites
polarization anisotropy (FPA). Specifically, our intent is t49). Such constant operators in that restricted space oft
estimate the rms amplitude of rapid local angular motion, tliannot adequately account for the Brownian dynamics in ar
relaxation time(s) characterizing the slow conformational tratarger conformational space, of which the inequivalent site
sitions, and the standard deviation of the Larmor frequenciesnstitute a subspace. Although Brownian motion in the ful
among the accessible conformations. In order to do this, itéenformational space typically proceeds accordingstation-
necessary to have a reasonably complete theory describing tasw (homogeneoysMarkov process with a time-independent
both rapid rotations and slow site exchange processes contstpchastic operator, the resultant population dynamics with
ute to each of these properties. However, there presently exis subspace of inequivalent sites, after integrating over (
significant gaps in the available theory, much of which pertaissimming out) the conformational coordinates external to th:
only to two-site exchange models. subspace, generally follows aonstationary (nonhomoge-
In the absence of any slow site exchange due to either slaeou3 Markov process with dime-dependenstochastic op-
conformational transitions or chemical exchange (e.g., esrator, for example a time-dependent rate matrix or a diffusio
change of protons with solvent), the rapid rotations providmperator with time-dependent diffusion coefficieni§)( The
“intrinsic” contributions, namelAvy,, R3, andRj, to, respec- stochastic operator approach with a time-dependent stocha:s
tively, the linewidth, decay rate of the even spin-echoes inogperator is shown to be fully equivalent to the trajectory
CPMG pulse sequence, and decay rate of the transverse naggproach for the same nonstationary (nonhomogeneot
netization in a resonant spin-locking field. The superscript oMarkov process in Appendix A. Although the trajectory ap-
used to distinguish these intrinsic contributions due to rappfoach in principle remains valid even for non-Markovian
rotations from the total contribution that is manifested whetynamics, wherein inertial effects and memory are importan
effects of site exchange are also included. Expressions fhe stochastic operator approach very likely does not, becau
dipole—dipole, quadrupolar, and CSA contributionsRtbare the present proof of equivalence fails in that case.
available for fairly general model2), as noted above. Of The effects of two-site exchange on the lineshape and dece
course,Avy, = R3/, as is well known. The dipole—dipole of both simple and CPMG spin-echoes have been formall
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treated in a rather complete manner, valid for all times amntinuous Gaussian model of diffusive site exchange ar
exchange rates, by both trajectofy?) and stochastic operatorderive its contributions to the lineshape, simple and CPM(
(10-19 approaches. Unfortunately, there exists no comparatsigin-echo decay(s), an,,. These derivations proceed by
general treatment of the decay of the transverse magnetizatieckoning the appropriate accumulated phase of the transve
in a resonant spin-locking field. In the presence of site emagnetization of a single spin relative to the zero of a phase
change, relaxation of the transverse magnetization in a freerotating frame (resonant with the mean Larmor frequency
induction decay and the decays of both simple and CPMG smine to fluctuations in its Larmor frequency along a particula
echoes are generally nonexponential, although the deviatiosmjectory and then performing an ensemble average over:
from single-exponential behavior may be rather slight in sonp@ssible trajectories. Abragam provided an essentially identic
cases, for example, (1) at very short tinles T andt < 1/Aw, treatment of the lineshape for ad hocscenario in which the
wherer is the exchange time anklw the difference in Larmor fluctuating Larmor frequency was assumed to be a Gaussi
frequency between the two sites, whenever both sites exhit@ihdom variable with an exponentially decaying correlatiol
the same intrinsicR; rate, or (2) at any time in the fast-function @3). However, he was evidently unaware that such
exchange limit, defined bfw - T < 1.0 (13). Experimentally, scenario corresponds physically to overdamped one-dime
very short times with respect to exchange<€  andt < sional Brownian motion of the nuclear spin in a harmonic
1/Aw) can be sampled by either CPMG measurements wiplotential well located in a linear chemical shift gradient
very short cycle times oR,;, measurements with very highAbragam did not investigate the decay of either simple ©
precession frequencies, around the spin-locking field in the CPMG spin-echoes or the decay of the transverse magneti:
rotating frame. By such methods, the inhomogeneous dephtisn in a resonant spin-locking field for this model. The con
ing due to differences in Larmor frequency can be reversed amection of this model to discrete multisite jump models als
refocused before exchange renders it irreversible 12. Al- was not explored.
though it is possible to account for the effects of simultaneousThe plan of this paper is as follows. (1) The problem of how
spin—spin couplingX3), such effects can often be eliminatedo incorporate the effects of slow site exchange processes
by the application of decoupling pulses in experiments pehe spectrum, simple spin-echo decay, and even echoes o
formed on modern instruments and are not considered her€PMG pulse sequence is discussed, and both trajectory a
In the fast site exchange limit, wherein the relaxation rattochastic operator approaches are formulated. Their equi
k., = 1/7 for two-site exchange greatly exceeds the differen¢ence, for the case when the system evolves according to
Aw in Larmor frequency between the two sites, the relaxatiagime-dependent stochastic operator over the subspace of
of the transverse magnetization in a free-induction decay aequivalent sites, is proved in Appendix A. (2) The continuou:
the decays of both simple and CPMG spin-echoes beco@aussian model of site exchange is introduced, its Langev
single exponential 10-13. In this fast-exchange limit, the equation solved, and the autocorrelation function of its Larmc
effects of two-site exchange on the linewidth, decay rates foéquency obtained. The effects of exchange in this Gaussi
both simple and CPMG spin-echoes, and decay rate of tmedel are treated via the accumulated phase of the trajectc
transverse magnetization in a resonant spin-locking field haapproach. The spectrum (via the autocorrelation function of tf
been treated by simple second-order perturbation methadgerturbed transverse magnetization), the simple spin-ec
(16-21, 28. Such fast-exchange expressions were recentlgcay, and the amplitudes of the even echoes of a CPMG pul
employed to analyze (1) a CPMG spin-echo decay as a fusequence are expressed simply in terms of the relaxation tir
tion of the time-delay betweemn pulses 19), and (2) the decay and variance of the Larmor frequency, using formulas derive
of transverse magnetization in a spin-locking field as a functiam Appendix B. The behavior predicted in different limits is
of the precession frequenay; of the magnetization around theconsidered in detail. (3) Certain relations between this Gaus
resonant RF spin-lock fieldl®, 22, and also as a function ofian model and discrete multisite models are developed at
the offset between the frequency of the RF spin-locking fiekhalyzed. The equivalence of the continuous Gaussian moc
and that of the coalesced nuclear resona@8g These studies and all multisite models in the long time limit is proved in
enabled the detection of site exchange processes and quantitspendix E. (4) The total decay of the transverse magnetiz:
tive estimates ok, = 1/7in the fast-exchange limit. However,tion in a resonant spin-locking field is discussBg, is derived
such analyses provide little or no reliable information abotibr the case of dipolar relaxation of two spins of the same kin
any concurrent much slower site exchange processes that mét slightly different Larmor frequencies, which are both
lie outside the fast-exchange limit. nearly resonant with the spin-locking field, in Appendix C. Itis
In some case<24, 25, it was suggested that the conformashown thatR;, is practically identical toR;, when the rota-
tional exchange involved more than two states, or even difftional motions are rapid, as assumed. The contribution of si
sive motion among a continuum of states, but there appeareihange in the Gaussian modeRg is derived by a heuristic
be no comprehensive treatment of the effects of any continudtegectory approach in Appendix D. (5) Experimental line-
diffusive model of site exchange on any of the relaxatiowidth, CPMG spin-echo decay, aRi, data @5) for the H,
properties of interest. In the present work we formulate @oton of A9 of the duplex DNA sequenc€;6GAGGTTTA-
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AACCTCG-3, are analyzed under the assumption of a single Trajectory Approach
Gaussian exchange process and again under the assumpt|
that two Gaussian exchange processes, one fast and one mu
slower, take place concurrently. The model of two Gaussiaft
exchange processes is shown to be most consistent with al
the NMR relaxation data. (6) The problem of detecting and
characterizing a second site exchange process is discussedlM:((1), t)
detail, and a particular example is explicitly demonstrated. dt

ne can regard the ind&X(t) as time-dependent along the
Jectory of a single spin. With this modification, Eq. [1] can
Sfrewrltten as

= [+ (0o + 3w(2(t)) — RIM.(Q(D), 1),

3]
THE PROBLEM
which can be formally solved to yield
We consider a simple sphsystem in which each spin
resides in a site designated by the indexwvhich may be either
discrete or continuous. In the presence of the main magnetic

field, a spin in siteQ) has Larmor frequencw((}) = o, + ) ) )
sw(Q)), where In general, the absorption spectrum is proportional to th

imaginary part of the susceptibility, namel26]

Mi(Q(t), t) — e—RgtIimotIiff]dt’Sw(n(t’))Mi(Q(o), 0) [4]

w, = (w(Q)) = 2, fRw(Q) = | dOP,(Q)w(Q 1 * .
ety % . f (et Xi(w)=|((:-|-Ref dt((M,((0), 0) M,(Q(1), 1)))e",

is the equilibrium average Larmor frequency, d@s(}) is the [5]
deviation from that. The quantify, is the equilibrium fraction

of spins in the discrete sit€, or P,(Q) is the equilibrium Where the double angular brackets denote first a quantu
distribution of spins among continuous sit@s We consider Mechanical average and then a trajectory average for the
theM. = M, = iM, components of the transverse magnetRerturbed (by RF power) system. Becalde = (5)(M. +
zation operator. The guantum mechanical average magnetih-), the correlation function in Eq. [5] can be written as
tions of the spins in sit€) at timet are denoted byM , ({2, t))

and(M _(Q, t)). When the spins arfixedin the site at(), the (M, (Q(0), 0) M,(Q(t), 1))

transverse magnetization operators are assumed to obey the — [(M(Q(0), O)M..(Q(1), D))

Bloch-type Heisenberg equations,
+({(M(Q(0), 0)M_(Q(1), t)))]/2. [6]
dM.(Q, 1)

dt =[ Fi(w,+ 6w(Q) — RIIM.(Q, 1), [2]

Multiplying Eq. [4] by M,(£2(0), 0), performing the quantum
mechanical and trajectory averages, and usitg,(€2(0),
whereRY is the contribution of rapid motions associated wit®) M,(2(0), 0))) = 0 gives

the site to relax the transverse magnetization. It is essential that

the correlation functions of all motions contributingRé relax (ML (Q(0), 0) M_(Q(1), t)))
on a time-scale much less th@f = 1/R;, because the Golden oo R%/ 51 [ () ,
Rule or double-commutator formulas used to calcuRieno = et (e o (My(2(0), 0))r,  [7]

longer apply when the relevant relaxation times excE®dO0.
Any slower motion can in principle be regarded as a transferwhere the subscripT indicates a trajectory average. For a
spins among different sites, which could represent differespins system(M,((0), 0)°) = (u?/4)a}) = n’l4, where
molecular orientations when the molecules rotate extremety is the corresponding Pauli matrig, = vy, is the nuclear
slowly. However, in the usual circumstance, which is assumethgnetic moment, ang, is the magnetogyric ratio, regardless
here, the relevant relaxation times for molecular reorientation&the spin site()(0), so it can be removed from the trajectory
are extremely small compared Tg. Consequently, the sloweraverage of the phase factor. The correlation functio
motions correspond exclusively to either conformational flu¢éM,(€Q(0), 0)M_(€(t), t))) contains the factor €' and
tuations or chemical exchanges that alter the isotropic chemittalls does not make a “resonance” contribution to the integr
shifts and Larmor frequencies of the nuclei involved. It i;1 Eq. [5], so its contribution to the spectrum is negligibly
assumed throughout this work tHa{ is the same for all sites. small. As is customary, this nonresonant term is ignored in th
One can envision two alternative approaches to treatisgquel. In view of these considerations, the relevant correlatic
intersite transfer. function for the NMR spectrum is now
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(M, (Q(0), 0) M, (Q(1), 1)) 2. Stochastic Operator Approach

= (p?8)e lwotRIY g i Sodron(@(t)y [8] An alternative approach is to write a separate Heisenbe
equation for the spins at each site, or at each valde, e¥hich

is regarded adixed, but to take account of the transport

é)ﬁtween sites by an appropriate stochastic evolution operal
10, 11). In that case, whefl is discrete,

For a simple spin-echo experiment in which th& pulse
establishes the positively rotating transverse magnetizati
namely(M, (2(0), 0)), att = 0, and ther pulse is delivered
at timet, the normalized magnetization at the timed the

“echo” is obtained from Eq. [4] as % e+ 50)) + RV, 0
(M. (Q(21), 2))) S OO DM T
(M (©(0), 0))) E (Q, 0, HM(Q', 1)

= @ (oo RIZ (U dUdu(Q) = [T do0 @) [9] = > R, Q, )M, (Q', 1), [12]

Q'
To obtain Eq. [9], the accumulated phase relativegonamely
Jodt' 8w (€(1")), is reversed effectively instantaneously by thghereT'(Q2, Q', t) is an element of the stochastic evolution
™ pulse att, after which the phase continues to evolve in thﬁ]atrix7 F(t), which operatores on the VeCtM,+(t), of mag-

usual way until 2. netization operatordyl, (Q)', t), for the different sites, and
Similarly, the amplitudes of the even echoes in a CPMG

pulse sequencer/ 2—(t—m—t—t—m—t),, are given by RIQ, Q. 1) = —(iwy + R)S0.0 — 180(Q)80 0

(M ((ndt), ndt))) o iaona +T(Q, Q1) [13]
(ML(Q(0), oy~ & e ey, [10]

is an element of the total evolution matri(t). If Q, O are
where continuous, then the sums in Eq. [12] must be replaced &
integrals and the Kronecker deltas in Eq. [13] must be replace

u by Dirac delta functionsg(€2, Q). In discrete form['(€2, Q'

Av(0, ndt) = f dt' Se(Q(t)) z(t) ;)t |§n2r;(i instantaneous rate constant for transfer ftdno Q

0 In general,I'(2, Q’, t) may depend on the time, although

8t commonly it does not, as in the case of multisite jump model
+f dt"Sw(Q(t")) z(t” — 4t) + . .. or uniform (rigid-body) rotational diffusion. When it does
@t depend upon the time, the origin of time must be taken t
coincide with the moment of “selection” of the spins for study,
nat " " ” e.g., the instant of the/2 pulse. The selection of such a specia
+ j dt"8w(Q(t")z(t" = (N = 14 fime has been discussed previousl{)(
(=14t The formal solution of the matrix equation [12] is

[11]
M (Q, 1) = 3 (Tes "), M (Q', 0,  [14]
is the net accumulated phase from G, andz(x) = +1 for a
O=x=t, —1fort=x=3t,and+1 for 3t = x = 4t. That

is, If dw(€)(1)) is positive, then the accumulated phase (§nore T js the time-ordering operator. It is assumed tha
positive during the first quarter of eacht 4ycle, negative M. (Q’, 0) is just the initial fractionf(Q’, 0), of spins in state

during the second and third quarter cycles, and positive duripg times the total magnetization operatdd ((0)) att = 0

the final quarter cycle of eactt £ycle. which is just the Sctidinger operator for the spin in question.
Equations [3]-[11] are fundamental and can be emplquqi]a ;

whenever trajectories di(t) are available, for example from tis

molecular or Brownian dynamics simulatiorar). Equations

[5] and [8] of this section are the principal results pertaining to M. (Q7, 1) = Q" HM(0) = f(Q", )(n/2)o., [15]
the spectrum, [9] is the principal result for the simple spin-echo

decay, and [11], [12] are the principal results for the evemhereo, = o, + io, is the appropriate Pauli matrix. The
echoes of a CPMG pulse sequence. total magnetization operator at tinh@s
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M. (t) = > M,(Q,t). [16] proved for only a stationary (homogeneous) Markov process
Q the space of the inequivalent sites, which corresponds to tl
case whenl'(2, Q', t) is independent of the time9). In
In this case, the relevant correlation function for the NMReneral, Brownian dynamics applies whenever the velocit
spectrum in Eq. [5] is distribution relaxes in a time much less than that required fc
the system to move between significantly different conforme
UM(0) M (1)) = (1/2)((M(0) M, (1))), [17] tions. Although Brownian dynamics in the full conformational
space generally proceeds by a stationary (homogeneol

where the double angular brackets now denote first a quantlffirkov process, the resultant population dynamics within th
mechanical average and then an ensemble average over infiiispace of the inequivalent sites, after integrating over (
conditions. In this approach a trajectory average is not tak&smming out) the conformational coordinates external to th:
because such a trajectory average is assumed to be alregiispace, generally does not. In such a case, the populat
implicit in the stochastic matriX’(t) and in the evolution dynamics within that subspace can generally be regarded a
factor, T exp[fs dt'R(t')], in Eqg. [14]. In Eg. [17], the nonstationary (nonhomogeneous) Markov process with a tim
nonresonant term has again been neglected. Making use of Elggendent stochastic operator. A proof of the equivalence
[14]-[17] and performing the ensemble average over initi&dgs. [22] and [8] in this case is indicated in Appendix A,

conditions gives specifically in Eq. [AL10]. For any system whose dynamics i
satisfactorily characterized by Brownian dynamics, Egs. [8
((M,(0) M,(t))) and [22] are completely identical. Moreover, all thermally

driven motions on time-scales 30 ps in water (or aqueous
solution) exhibit (overdamped) Brownian dynamics. Thus
Egs. [22] and [8], or equivalently [12] and [3], should be
equivalent for all cases wherein the significant changes |
conformation occur on a time-scate 30 ps. The common
neglect of the time-ordering operator is valid whenever th
matrix operatofl’(t) commutes with itselfI((t')) at any other
time. This condition is satisfied whenevéi(Q), Q’, t) is

= (1/2) X > (Telo®RW)  fA(Q )4, [18]

Qo

wheref °(Q)") = (f(Q)’, 0)) is the equilibrium fraction of spins
in siteQ)’. In Eq. [18] the relation$M(0) M, (0)) = (M,(0)?)
= (n?/4)ox®> = u®/4 have been employed. One can write

R=—(iw,+ RYL+ Q(1), [19] independent of time. It is also satisfied by diffusion operator

with time-dependent diffusion coefficients, which have bee

where from Eq. [13], frequently employed in connection with deformable macro
molecules g, 15, 29-32

(Q(t) g = —i80(Q)dg 0 + T'(Q, Q', 1).  [20]  The simple spin-echo signal in Eq. [9] can be rewritten usin

Eqg. [Al1] to obtain
Sincel commutes withQ(t),

TeSha(RI) — Tellh o1 flantRY1 Q0] (ML(020,20) o
(M.(2(0), 0))) 2

_ e—(imu+R;ﬁnTef{)dt’Q(t'>. [21]
t dt'o*(t’ 2t dt” "
X (Telodt@WTeli drey)  f2

| ((M.(20))
(M) M,(1))) = (1/2)e terRdt 5 ) = UML(0))) * [23]

o o

Use of Eq. [21] in [18] gives finally

X (Tels @) o fo(Q ) u?4.  [22]

where the last line simply expresses this quantity in the not:
Equation [22] in conjunction with [5] gives the spectrum. Ofion of the stochastic operator approach. It is implicit in Eq
course, wheti’(t) commutes witH'(t') at any other time, then [23] that ((M,(0))) is the magnetization immediately follow-
also Q(t) commutes withQ(t') at any other time, and theing the (nonselectivey/2-pulse.Q*(t) is the complex conju-
time-ordering operatoiT, can be omitted in Egs. [14], [18], gate (not the hermitian adjoint) @(t).
and [22], and also [23] and [24] below. The equivalence of Eq. The amplitudes of the even echoes in a CPMG pulse s
[12] and the more fundamental Eq. [3], or equivalently of Eqquencesr/ 2—(t—m—t—t—m—t),, in Eq. [11] can be written using
[22] and the more fundamental Eqg. [8], has apparently be&iq. [A13] to obtain
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(M. (ndt))) —(lont RO its displacement fronx, is dw(x(t)) = 6(x(t) — X,), where
(ML(0)) (172)e AP 6 is the magnitude of the gradient in Larmor frequency
« £ alongx.
% [(Tefg; Q) Tl dt”Q*(t”)Tef‘Ddt’”Q(t”’)) Mo fo [24] Let 6x(t) = x(t) — X, denote the instantaneous displacement ¢

the nucleus fronx,. This displacement coordinate is assumed t

BecauseQ*(1) does not generally commute wid(t), their obey an overdamped Langevin equation of the form

corresponding exponential factors in Egs. [23] and [24] cannot dsx(t
be simpl_y combined. In any case, Egs. [23] and [24] of the f x(t) + gdx(t) = F(t), [26]
stochastic operator approach correspond to Eqgs. [9] and [10] of dt
the trajectory approach. Wheér(t) commutes withQ*(t") at
any other time, and)(t) commutes withQ(t') at any other Wheref is an effective friction factorg is the force constant for
time, then the time ordering operators can be removed frdh potential well, and(t) is a very rapidly fluctuating force
each factor, but their corresponding exponential factors s@erted by the environment on the atom or group of atoms
cannot be combined. which the nucleus is a part and along with which it moves. W
Equations [22], [23], and [24] are the principal results of thigre concerned here with exchange processes that take place
section for the spectrum, simple spin-echo decay, and decayf# Brownian or slower time-scale, long after the velocity
the even echoes of a CPMG sequence via the stochastic ogétocorrelation function has relaxed. In that case the motion
ator approach. They are readily generalized to admit a differétter-damped and the inertial (acceleration) term can be om
intrinsic RS rate for each site. For the case whE(t) and, ted from the Langevin equation, as was done in Eg. [26]. Th
hence, alsdQ(t) and Q*(t) are independent of, the time- friction factor is related td=(t) by the fluctuation—dissipation
ordering operators can be omitted, and Egs. [23] and [24] @¥pressionf = (1/ksT) [s d{F(0)F(t)), where the angular
equivalent to the corresponding results of Gutowskgl.(13) ~ brackets denote an equilibrium trajectory average of the forc
and Allerhand and Thiell) for discrete multisite exchange ofon astationaryatom or group bearing the nucle@s|. F(t) is
uncoupled spins. In that case, Egs. [22], [23], and [24] can B#ther assumed to be a Gaussian random variable, whi

put in computationally tractable forms by substituting the réhould be a good approximation, since it contains contributior
lation from many system coordinates. Because the differential equ

tion is linear, bothéx(t) and dw(x(t)) = 66x(t) are also
Gaussian random variables. When Eq. [26] is multiplied b
6x(0) and ensemble averaged, there results

t2 ’ ’
e/t dtQt) — geAlte-tyg -1 [25]

and the corresponding complex conjugate relation whe3ésn d(8x(0)8x(1))
a matrix that diagonalize€) by similarity transformation,

S'QS = A, andA is the diagonal matrix of complex eigen- dt
values. In the event thd, which is nonhermitian, is nondi- . .
agonalizable (i.eS™ does not exist), the protocol of Allerhand!t IS fundamental to linear response Langevin theory Faj

and Thiel (4) may provide a useful alternative approacHS Ot correlated witldx(t’) at any earlier time, sGx(0)F(t))

although it s still necessary to evaluate an exponential function 0- The straightforward solution is

of the Q matrix by some (unspecified) means. In any case, we

are aware of no physically realistic examples for whi@ts (8x(0)8x(1)) = (8x(0) e ", (28]
nondiagonalizable. Extensive elaboration of the effects of two-

site exchange on the spectrum and decays of both simple #fterer = f/g is the relaxation time for Brownian motion in

CPMG spin-echoes can be found in the works of Gutowetky the harmonic well, andéx(0)*) = ksT/g is the mean-squared
al. (13) and Allerhand and Thielld). displacement in the harmonic well. Similarly, the autocorrela

tion function for the frequency shift of a spin is

+ g(8x(0)8x(t)) = 0. [27]

BASIC THEORY OF A CONTINUOUS -
GAUSSIAN MODEL (8w(0)dw(t)) = 5%, [29]

We now consider a situation where, instead of discretehere 5° = (8w(0)*) = 6°ksT/g is the variance of the
jumps, a nucleus undergoes continuous translational Brownimemical shift over the equilibrium distribution of spins at the
motion (diffusion) in thex direction in the molecular frame in different positions in the harmonic well. This model might be
a harmonic potential well centeredxatand also experiences aexpected to apply to circumstance where particular fluctuatiot
linear gradient of (rotationally averaged) chemical shielding molecular conformation translate one subunit relative t
alongx. Thus, if the Larmor frequency of a nucleusxgtis another over a small distance, so the variation in chemical sh
denoted byw,, then the incremental frequency associated withith translation is nearly linear. In order to realize long relax:
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ation times, whery is sufficiently large to limit the motion to  Expressions identical to [32]-[34] were obtained by Abragar
relatively small amplitudes, the effective internal friction mus3) for anad hocscenario, in whictbw(t) was assumed to be a
be very great. This could be achieved by imposing large fr&aussian random variable of zero mean with an exponential
energy barriers between discrete sites algngh which case decaying correlation function. The present study identifies for th
the continuous model would be an approximation to a partifirst time the physical model that underlies Abragamats hoc

ular multisite model. scenario and explicitly derives its relevant properties, namely th
dw(t) is a Gaussian random variable of zero mean with an exp

LINEWIDTH AND SPIN-ECHO DECAY FOR THE nentially decaying correlation function.
CONTINUOUS GAUSSIAN MODEL The accumulated phase factor in the simple spin-echo dec

amplitude is evaluated in a similar fashion by setting
Becauséw(Xx(t)) = 06x(t) is a Gaussian random variable at any
time, it is quite simple to evaluate the relevant magnetizations ( e+ dvdw(t)— 2 dout)y = (gide2n) [35]
using the trajectory approach in Egs. [8] and [9]. For simplicity, T '
we setdw()(t)) = dw(X(t)) = dw(t) in the following. The trajec-

tory average of the phase factor in Eqg. [8] is first written as where in this case the net accumulated phase is

t 2t
(1 TbaUautly = (goitet) [30] Ae(2t) = J dt'sw(t’) — J dt’sw(t’).  [36]
0 0

where . . . . .
Again, Ae(2t) is a linear superposition of Gaussian randon

variables of zero mean and is therefore also a Gaussian w
zero mean and a variance,

Ag(t) = jt dt'sw(t') [31]

t t
(Ae(2t)?) = <J dt'dw(t’) f dt”Sw(t”)>
is the accumulated phase difference at tim8inceA ¢(t) is a 0 0
linear superposition of Gaussian random variabkgs({)dt)
of zero mean it also is a Gaussian random variable of zero S N Y
mean with variance + <f dt’dw(t’) J dt"8w(t")
t t

(A(p(t)z)=<J dt’Sw(t’)J dt”8w(t”)> —2<J dt’Sw(t’)J dt"8w(t”)>

=282t tItr— 1+ e '] [32] =282t [+27/t — 3+ 4e"— e "], [37]

which is derived in Appendix B. Consequently, one can writghis variance is also evaluated in Appendix B. It is propor
tional to (/7)° for smallt < 7, and therefore vanishes in the
(e 1d¢l)y = @ Be/2 = gd%rfUr—1re ] [33] limit t/T — 0, as expected when no transfer between sites
possible. One can now write
Upon inserting Eq. [33] into [30] and [30] into [8] (with
UM ((0), 0)M,(Q(1), 1)) = ((M,(0)M,(t)))) one obtains (g2 = g (Ac@)B/2 — g=d¥7+2/r-3+ae"tr—e 2] [3g]

((M(0) M, (t))) = (n?/8)e (iworRatg=d2rlUr=1+e™"l - [34]  Upon inserting Eq. [38] into [35] and [35] into [9], the ampli-
tude of the simple spin-echo signal is finally obtained as
This expression is incorporated into Eqg. [5] to obtain the spec-
trum, which is evaluated numerically. The varian@ep(t)®) is ot M, (Q(21), t)))

proportional to 1) at small imeg < 7 and a positive increasing A2t) = e (M. (Q(0), 0)))
function of the time for alt > 0. Consequently, the effect of site . s I
exchange is generally to increase the rate of decay of the trans- = e Mg dirlralm e e, [39]

verse magnetization abov& and increase the width of the

spectrum abovawv;, = RY/m. Of course, the spectrum become3he multiplication by &°* in the first line of Eq. [39]
non-Lorentzian as a consequence. Equation [34] describes divaply removes the oscillation at the average Larmor fre
decay of the free induction signal. quency, w,. Again, the variancgAe(2t)?) is a positive,
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increasing function of the time fdr> 0, so the effect of site The multiplication by &™ in the first line of Eq. [43] removes the
exchange is generally to increase the rate of decay of theillation at the average Larmor frequengy In the limit ndt <
simple spin-echo abovR}. That decay also becomes nons, the variance{Ay(0, n4t)?) is proportional tan(t/7)°, so vanishes

exponential.

in the limit t/7 — 0, as expected, when no transfer between site

The accumulated phase factor at the times of the even echisegossible. As expectedAy(0, n4t)®) is a positive, increasing
in a CPMG pulse-sequence is defined in Egs. [10] and [1ilnction of botht andn for t > 0, so the effect of site exchange
Avy(0, 4nt) is a sum of Gaussian random variables of zeiis generally to increase the rate of decay of the even CPMG si
mean, and so is itself a Gaussian random variable of zero mezrhoes as a function of eitharor t aboveR;. The decay rate,
Its variance is obtained by a somewhat involved derivation Rf™°, of the CPMG even echoes is here defined by the ampl

Appendix B with the result,

(Ay(0, n4t)?)
= 8272{2n[4t/7 — 5+ 4e V4 47— 4737 + 747

F(t/7) F(t/7)

— _ _ —(n—=1)4t/7
T D2Eyn T 2Ewn e )}'
[40]
where
E(t/r) =e¥" — 1 [41]
and
F(t/r) = (1 + e 27— 27 Un)el"
X (1 _ e*t/‘r _ e*Zt/T + e*3t/7)
X (1 _ et/r _ ezth— + e3"7). [42]

Upon insertingexp[—iAy(0, ndt)]) = exp[—(Ay(0, n4t)*)/2] into
Eqg. [10] and making use of [40]-[42], the amplitude of thta
even (or 2th) spin-echo of a CPMG sequence is given by

((M.(Q(n4t), ndt)))
((M.(©(0), 0)))
= e Rotex —62r4n(4t/r — 5+ 4e V"
+ 4e N — 4o W 4 g )
+ (n— 1) F(t/7)/E(t/7)
— F(t/m)(1 — e V4 E(t/ 1) 2.

[43]

i won4t

A(n4t) cpuc

tudes of the echoes observed for 1, 2, 3, 4, ..., at dixed
value of the #cycle time. In the presence of site excharie,"®
decreases with decreasinigcgcle time, and approachgs in the
limit 4t/ — 0.

Equations [34], [39], and [43] provide simple analytical
expressions for use in calculating the NMR spectrum and bo
simple and even CPMG spin-echo decays as a function of tl
correlation time,r, for motion in the harmonic well and the
equilibrium variance$?, of the chemical shifts. When analyz-
ing experimental data, it is useful to rewrite Eqgs. [34], [39], anc
[43] in terms of the dimensionless quantities,

d=(6/R) and e=R37 [44]
to obtain
((M(0) My(1))) = (?/8)e l1ew* Rt 0 elMUelR e om)
[45]
A(2t) = efRSZtefdZeZ[Zt/(e/Rg)73+4e*"'E/R§)7e*2WE/R§>]

[46]
and

A(n4t)cpye = exd —RSnat]exd —d%e?{n(4t/(e/R3) — 5 + de V(FR2) 4 4g - 2/(ERY) _ 4o -3V(ERY) 4 g=4(eRD)

+ (n— 1) F(t/(e/RY)/E(t/(e/RY) — F(t/(e/RY)(1 — e~ " DUER) IE(t/(e/RY)Z].  [47]

In order to estimate and 8 from experimental spectra and
the decay of the CPMG even echoes at a single time delay, o
must have an independent estimatdRr8f Although one could
assume thaR; values for the same nuclei at different subunits
in the same molecule are similar, whether they do or do n
undergo slow site exchange, that presumes that the rapid «
gular motions responsible f&; are unaffected by any factors
associated with the slow conformational mobility. Whether th
rms amplitudes of rapid local angular motion are significantl
enhanced for nuclei that undergo slow site exchanggsig a
guestion of particular interest to us. In order to deterniRie
as well asr andg, one can either measure the decays of CPM(
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even echoes with progressively shorter delay tintg$1©), or perimentally significant only wheR3n4t = 1.0 for some of
the R,, decay rates in resonant spin-locking fields with prahe times in the domaim4t < r andt < 1/8, which requires
gressively larger precession frequenaigg19, 22. The (heu- R > 1/7, 8/4n. In that event, and only then, significant
ristic) theory forR,, is discussed in a subsequent section. exponential decay with increasingat fixedt occurs in this
domain with rate constarR;.
BEHAVIOR OF THE CONTINUOUS GAUSSIAN MODEL In the long time limit, defined by > r, the site exchange
IN VARIOUS LIMITS contribution in the exponent is preciseBfrn4t, and the
overall decay of the CPMG even echo train is again exponel
It can be seen from Egs. [34], [39], and [43] that the relevagtl with rate constanR; + &°r. Again, this limit will be
decays (excluding the &°' oscillations) are generally nonex-experimentally significant only whedr < 1.0 andRS < 1/7,
ponential, except at very short times and again at very losg the signal has not already relaxed at some earlier time.
times, where single-exponential behavior prevails. The argu-Particularly simple behavior of all the relevant decays i
ments are detailed separately for each case below. observed at all times in yet a different limit, namely the fas

. exchange limit.
Transverse Magnetization in Eq. [34]

In this case the very short time limit is defined by 7, t The Fast Exchange Limit

< 1/8, and by the requirement that the corresponding siteIn the fast exchange limit, defined By < 1.0, the relevant
exchange contribution to the exponent, namely’t?, be decays all become single exponential. The site exchange cc
negligibly small compared t&zt. This limit will be experi- tribution to transverse magnetization relaxes negligibly until
mentally significant only wherR3t = 1.0 for some of the > 7, in which case Eq. [34] can be accurately approximated k
times in this domaint < 7 andt < 1/8, which requireR; >
1/7, 8. Only then does significant amplitude decay in this short (UML(0) ML(1))) = (n?8)e lwrtRitg-s2rt, [48]
time limit, and that decay is exponential with rate consft
In the long time limit, defined by > 7, the site exchange
contribution to the exponent is precisdiyrt, and the overall
decay is again single exponential, but now with rate const
RS + &°r. This limit will be experimentally significant only
when the signal amplitude has not already relaxed at some
earlier time. This circumstance occurs only wien< 1.0, and
RS < 1/7.

Likewise, whendr < 1.0, the simple spin-echo amplitude
relaxes negligibly until 2> 1, in which case Eq. [39] can be
6:ﬂ'l;curately approximated by

A(2t) = e Re 02, [49]

Similarly, when ér < 1.0, the CPMG even echoes relax
Simple Spin Echo in Eq. [39] negligibly untilndt > , in which case [43] can be accurately

approximated b
In this case the very short time limit is defined by & T, PP y

t < 1/8, and by the requirement that the corresponding site
exchange contribution to the exponent, namel28°t*/r, be
negligibly small compared tB32t. Again this very short time

limit is experimentally significant only wheRg2t = 1.0 for Where
some of the times in this domaint Z r andt < 1/8, which
requiresR? > 1/7, 8/2. In that event, and only then, significant f(t/7) =1+ (=5 + 4e™"" + 4e72" — 4e73"
exponential decay occurs in this short time domain with rate + e N (4t/7) + F(tIn)/(E(t/7)(4tIT).  [51]
constantR;.

In the long time limit, defined by > 7, the site exchange 1o gecay of the CPMG even echoes is exponential wit
contribution in t.he expopent is preC|se'ﬂ§/72t,. and the ovgrall increasingn, though not with increasing At any fixedt, the
decay of the S|mpI2e spin-echo amplitude is exponential Witf,q s incremented by adding another CPMG cyclg) (4 the
r:?\te 'c'onstanRS + 8°7. Again, this limit will be expermentally sequence, which increasesy 1. Because a total timedt is
significant only wherdr < 1.0 andR; < 1/, so the signal has ,qqqciated with theth echo amplitude, the decay rate constan
not already relaxed at some earlier time. is RS + 8°rf(t/7). In the limitt < 7, f(t/7) ~ (t/7)? < 1.0,

. . so0 &°f(t/7) must fall belowR; for some sufficiently smatl/r.
CPMG Even Spin-Echoes in Eq. [43] In that case, the rate constant for the CPMG decay approact

In this case the very short time limit is defined ift < 7, R3. In the opposite limitt > 7, f(t/r) = 1.0, and therate
t < 1/8, and by the requirement that the corresponding sitenstant for the CPMG decay approacRs+ §°r. Thus, by
exchange contribution in the exponent, namelgé®t®/7, be decreasing the CPMG cycle time, it is possible to map out tf

g p L g p p
negligibly small compared t®n4t. Again, this limit is ex- dispersion of8°7f(t/7), as it descends monotonically frodar

A(n4t)CPMG — e—Rgn4tefﬁsz(t/7)n4t' [50]
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for t/T > 1.0 to O for sufficiently smali/r. In this way one can ian random variable, the accumulated phase (relative to its ov
determine (i) the relaxation timefrom the position (midpoint mean) becomes a Gaussian random variable of zero mean ¢
time) of the dispersion, (ii) the standard deviation of theariance 3°rt, where §® is the variance of the Larmor fre-
Larmor frequencyb from the magnitude of the dispersion andjuency andr is the time integral of the normalized autocorre-
knowledge ofr, and (iii) also the intrinsidR3 from the residual lation function of the fluctuations in Larmor frequency, when-
rate constant at small times, provided that only a single skeer the phase accumulation peribdgreatly exceeds the
exchange process occurs. The predicted behavior, when tetaxation timer. This result is proved in Appendix E, where
different site exchange processes take place concurrentlyiors also generalized to arbitrary discrete multisite models
different time scales, both in their fast exchange limits, ihus, any discrete multisite model with the same intrirfigjc
discussed subsequently. for all sites must yield the same results as a continuous Gau:
The effect of site exchange on the decay of the transveisa model with the samé” and 7, whenevelt > 7. For such
magnetization in Eq. [34] and the simple echo in Eq. [39] ia discrete multisite model in the fast exchange limit, significar
maximal for times such that the site exchange exponenti® decay of either the transverse magnetization in Eq. [34] or tt
and is negligible at either much shorter times where thsimple spin-echo in Eq. [39] occurs only for> 7, and that
exponent is<1.0 or much longer times after the transversmodel behaves exactly like a continuous Gaussian mode
magnetization or spin-echo amplitude has already decayddreover, whert > 7, the decay of the CPMG even echoes
away. In the fast exchange limit, the site exchange exponentist also follow the behavior of a continuous Gaussian mode
reaches 1.0 only at some long tirmhe> 7, and that is the time Whent < r, the accumulated phase of such a discrete mod
for which the site exchange contribution is mainly sampled bg no longer a Gaussian random variable. Nevertheless, at ve
the decay of the transverse magnetization and simple spshort times,t < 7 andt < 1/8, it is expected on physical
echo. In contrast, the decay of the CPMG even echoes in Bgounds that site exchange will make no significant contribu
[43] with increasingn can probe the site exchange contributiotion to the decay, so that such a discrete model in its very shc
even at much shorter times by using a small cycle timg, (4 time limit will exhibit exponential decay with rate constdrg.
but also a very largen to obtain significant decay. With Thus, any discrete model with a uniforR for all sites is
sufficiently short cycle times, the dephasing due to variatioegpected to behave in precisely the same fashion as the cc
in Larmor frequency are reversed and refocused by the CPMiGuous Gaussian model in both the very short tihe<(r, t
pulse sequence before site exchange leads to irreversible l&s4/8) and the long timet(> 1) limits, neither of which is
of coherence, but with longer cycle times such irreversiblecessarily experimentally significant. In the particular case ¢
coherence loss is not prevented and the rate constant for sheh a discrete model with uniforiR; in the fast exchange
relaxation increases, as indicated by Egs. [50] and [51]. limit, where the decay of the CPMG even echoes is exponenti
for all timest, the rate constant for that decay will be identical
RELATION OF THE CONTINUOUS GAUSSIAN MODEL to that for the continuous Gaussian model at both very short
TO DISCRETE JUMP MODELS < 1) and long ¢ > 7) limits, as is found to be the case for the
two-state model. In this limit, the results are probably not ver
Our Eq. [50] is directly analogous to Eq. [31a] of Daetsal. different even at intermediate times. Of course, results for the:
(19) for the decay of the CPMG even echoes of a two-site jumiwo models will be very different in other limits. For example,
model in the fast exchange limit. For the particular case ofiathe slow exchange limit, defined & > 1.0, when alsdr;
symmetrical two-site jump model, in which the populations< 6, the site exchange contribution to the decay is maximal
and intrinsic R; rates for both sites are identical, the fasa short (but not very short) timé,~ 1/6 < 7. In this case, the
exchange CPMG results for the two-site model are identical $iie exchange exponent in Eq. [34J0&°/ 2 for the continuous
those for the continuous Gaussian model in both the short a@dussian model, which yields a Gaussian spectrum, wherea
the long time limits, provided is identified withAw/2, where discretem-site model with unifornRR; yields a multiline spec-
Aw is the difference in Larmor frequency between the two sitésim containingm peaks.
andr is identified with the relaxation time, 1k2 of a two-site
model with transition rate constanksfor hopping in either R,, FOR THE CONTINUOUS GAUSSIAN MODEL
direction. The spectrum and simple spin-echo decay are like-
wise identical for the two models in this fast exchange limit. A quantity calledR,, = T, is commonly measured to
This equivalence can be understood by the following arginvestigate slow site exchange. In this method an init&d
ments. (1) In the fast exchange limit, significant decay due palse rotates the equilibrium magnetization into the transver:
site exchange occurs only at long times, specifically &t  plane, where its orientation defines thieaxis in the rotating
for the transverse magnetization in Eq. [34], &2 7 for the frame (X', y’, z’). Then a spin-locking RF pulse is applied
simple spin-echo decay in Eq. [39], andradt > 1 for the alongz’ in the rotating frame for a time duratidnafter which
CPMG decay in Eq. [43]. (2) Even though the fluctuating is cut off and the subsequent free-induction decay measure
Larmor frequency of a discrete multisite model is not a Gausghe initial amplitude of the free induction decay is recorded a
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a function of the duratiornt of the spin-locking pulse and is model in the fast exchange limii{—2J), but its domain of
typically found to decay exponentially. validity is not restricted to the fast exchange lidit<< 1.0, but
Relevant theory for the contribution of heteronuclear dipoléastead tow, > 8, which could in principle be satisfied even
dipole interactions t&,, was formulated by Pergf al. (6) and when 67 = 1.0. The total rate of exponential decay of the
Peng and Wagneb], and their result is presented in Appendixransverse magnetization during the spin-lock is
C. Additional theory to treat the contributions of both homo-
nl_JcIear Qipole—dipole interactions _(between nucl_ei with Ry, = R} + R, [55]
slightly different resonance frequencies) and chemical shift
anisotropy toR,, for the particular case of resonant RF power
is also presented in Appendix C. We assume again that th
relevant molecular motions can be divided into those rotations
that take place on a time-scale equal to or less than the longest R, = RS + d’eRy/(4(1 + wi(e/R})?). [56]
uniform rotational relaxation time and much slower transitions
between conformations that give rise to site exchange. It isThe requirementy, > §, for validity of theR3; formula [54]
shown in Appendix C that the contribution of the rapid rotamay confinew, to relatively large values in order to obtain
tional motions toR,,, which is here designated bR, is interpretable data. In that cage,, becomes very insensitive to
practically identical to the corresponding contribution of thosany very slow site exchange processes, for whigh > 1.0
same rapid rotations to the spin-echo decay, narRélyThat andRj; is very small.
is, RS, = Rj to very high accuracy. Thus, under the assumed This continuous Gaussian model is the only site exchang
conditions, the difference betwed®,, and the simple spin- model for which simple and accurate analytical formulas fo
echo decay rate arises entirely from the contributions of sldive lineshape, decays of both simple and CPMG spin-echoe
site exchange. Qualitatively, the effect of the spin-lockingndR,, are available valid outside the fast-exchange lirit,
pulse is to rotate the magnetization around zhexis in the < 1.0. In fact, Egs. [34] and [45] (in conjunction with Eq. [5])
rotating frame, so it can be regarded as a train of contiguo@sy; the lineshape, [39] and [46] for the simple spin-echo deca:
o pulses, if it is not actually so in practice. Thus, the inversioand [43] and [47] for the CPMG spin-echo decay are valid fo
of the accumulated phase takes place continuously, and #llevalues of the standard deviatiad),of the Larmor frequency
effects of site exchange to diminish the amplitude of the signaihd relaxation timer, of the Gaussian site exchange proces
are correspondingly reduced R,, compared to the simple and Eqgs. [52]-[56] for the decay of the transverse magnetiz
spin-echo decay, where the time delays betweeuulses are tion in a resonant spin-locking field are valid wheneugrs>
normally much greater. 8, even outside the fast exchange limit.
An approximate theory of the contribution of site exchange
in the continuous Gaussian modelRy, is presented in Ap- APPLICATION OF THE CONTINUOUS GAUSSIAN
pendix D. After a spin-lock time, the transverse magnetiza- MODEL TO ANALYZE EXPERIMENTAL DATA
tion is given by

eIn terms of the dimensionless variables of Eq. [44]

Estimates ofR3, 7, and 8 can be obtained wheR,, is
UM, (Q1), D)) o i measured as a function of inc_reasir_lg_ spin-lock frequeppy
(ML(2(0), 0))) — g oot RItg=(Ay®9/2 [52] and found to bottom out at its minimum valuRj. This
* ' circumstance prevailed in a study of tH€1' nucleus of the
A4 deoxyribose in the duplex sequence-GCGAAATT-

where under the conditions discussed in Appendix D, TCGC-3 (22). Fits of R,, to an equation of the form of Eq.
[56] yielded values foR3, 7, and 8. However, in the absence

(Ay(t)?/2 =Rt + D [53] of CPMG spin-echo decay and linewidth data, one cannot |

© o2 _ certain that there exist no additional much slower site exchan
R = 0°7/(4(1 + wit?)), [54] processes. As illustrated below, when thgvalues examined

are all sufficiently large, it is possible for much slower site
wherew; is the angular precession frequency of the spin vecterchange processes to contribute significantly to the linewids
around the spin-locking field in the rotating frame, dhds a and decay of the even CPMG spin-echoes, but to make virt
constant (independent tfgiven in Eq. [D12]. A more general ally no contribution toR;,.
expression forAy(t)?)/2 is given in Eq. [D9]. It contains In a‘H NMR study of the duplex sequencé&6GAGGTT-
oscillatory terms that will vanish whenever the spin-lock conFAAACCTCG-3', considerable evidence was obtained for ¢
sists of an even number of pulses and will probably vanish site exchange process involving AZ5j. For the A9-H2 proton
in any case for times sufficiently long that;t > 1.0, for at 31°C, (1) the reported linewidth (after correction for 3 Hz
reasons discussed in Appendix D. The expressiorRfris instrumental broadening due mainly to field inhomogeneit
similar in form to that presented previously for a 2-site jumfM. A. Kennedy, personal communication) was,, = 10 Hz
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(FWHM), or equivalently (1/2w,, = 31.4 rad §* (HWHM); %%
(2) the reported decay rate of the CPMG even echoes in a \31.4 9.3
sequence with a cycle time oft & 4 ms (M. A. Kennedy, 001 N34S Jo79 E
personal communication) wa;™¢ = 26.3 s*; and (3) the TN ]
reported decay rate of the transverse magnetization in a reso-
nant spin-locking field withw, = 13800 27 = 8.67 X 10° |
rad s* wasR,, = 6.25 s* (25). In the absence of site 000l
exchange, these values of (1A%),,,, R$™™°, andR,, must all F e

be identical and equal tB;. Hence, the presence of one or I S

T
Q

more site exchange processes can be immediately inferred. | I3t

If only a single site exchange process occurs, then these? %! 3
three experimental values in conjunction with Egs. [45] (in
[5]), [47], and [56] in principle allow a determination &3, , d
andd. For any given choice dR3, , and$, or equivalently, of
R3, d = (8/R3) ande = (R37), the spectrum can be calculate

2 e ( 452) 415 ( Zd)t h pr dith 4 directlv 28.6, 31.4, or 34.5 rad $ (dashed lines as indicated) and the CPMG
Vl_a h gs. [45] and [5] and its half-wi m‘?asure Irec ySpin—echo decay rateR;™° = 24.7, 26.3, and 27.9°§ (solid lines as indi-
Similarly, the decay of the even CPMG spin-echoes can Bfed). The middle curves in each case apply to the reported experimer
calculated via Eq. [47] and least-squares fitted to a singlaues, (1/2 oy, = 31.4 rad s* andR§™° = 26.3 s, whereas the outer
exponential function in the same manner as the experimerfives apply for the experimental values plus or minus one standard deviatic
data to obtain the CPMG echo decay r&f@PMG A general The curves that yield the three (1A2),,, values are generated in the following

trat i t lect trial val BE(=R ’ d.f h of way. The target value of (1/&w,, (e.g., 31.4 rad 9) is selected. A particular
strategy IS o select tnal values (_ 1!’)’ "_m_ or each o value ofd is then chosen and entered into Eg. [45] along with a trial value o
those to compute the curve efvs d that satisfies the exper-e, The correlation function in Eq. [45] is then computed for a range of time
imental linewidth constraintAv,,, = 10 Hz, and another curve points and Fourier transformed to compute the spectrum. The full width of th
of e vs d that satisfies the CPMG even echo constrd®st®  spectrum at half-height is then determined and compared with the target valt
= 26.3 s'. The region where these curves cross locates tg value ofe is adjusted and the process is iterated until the compute

. . .. (1/2)Aw,, matches the target value. Then a new valud &f selected and the
area of thee—d plane that is to be g”d searched. Beginnin rocess repeated until again the same target value is matched, but now fc

with the central cross point, trial pairs efandd values are gifferent d, €) pair. In this way the curve of versusd that yields the target

used to calculat®,, as well asAv,, andR5™, and from those linewidth is mapped out. The curves that yield the thRE“® values are

is calculated a chi-squared, generated in a similar fashion. Again, the target value (e.g., 26Bis
selected. A particular value dfis then chosen and entered into Eq. [47] along

with a trial value ofe. The amplitude in Eq. [47] is computed for a range of

T
)
i
1
i
)
i
t
t
t

o
o
)
—
=
S
=
13
o
N
=]
=]

d FIG. 1. Curves ofe versud that yield the linewidths (HWHM) (1/2Yw,,

x2=((Avy) "™ — (Av)$H) U ody time points and fiTted to a single exrggge_ntial decay (as_ were the experimen
data). The best-fit decay constaR§™®, is then determined and compared
+ ((RSPMO I — (RGPME &) 2/ 52 with the target value. The value efis adjusted and the process is iterated until
" o) 2 the computed best-fiR;™® matches the target value. The points where the
+ ((Rlp) - (Rlp) %) /(TSLa [57] dashed and solid curves cross define thee] pair that simultaneously yields

both the target (1/w,,, andRs™® values. The crosspoint for the curves that

] ) yield (1/2Aw,, = 31.4 rad s* andR™° = 26.3 s’ isd = 56.8 ande =
where the superscripts th and ex denote theoretical and expess x 10, Given the valug? = 6.25 s*, these values correspond to=

imental values, respectively, and,, ocpue, aNdog. are the 2 x 10*s ands = 355 rad s*.

estimated errors in the experimental linewidth, CPMG even

echo decay rate, arfd,, rate, respectively. The grid search in

the d—e plane should yield thel ande pair that minimizesy® value. Consequently, the initial choide; = 6.25 s* and the

for any given choice oR and may even redugg completely central crossing point of the vs d curves givey’ = 0 and

to zero for the correct choice &;. By sampling several values provide a satisfactory solution in that regard. Curves of e

of Rj3, the choice of all three parameters defining the globelere also calculated for each constraint value (S, or

minimum in * can presumably be found. 57" plus or minus one standard deviation, and these are al
In the present case, it was not necessary to itdRatasince displayed in Fig. 1. The overlap region is seen to span a wic

the initial choice,R; = R,, = 6.25 s, proved to be self- range of bothe andd values. However, ad increases within

consistent. Thee vs d curves that satisfy the linewidth andthe overlap region, the contribution of this site exchange prc

CPMG even spin-echo constraints ¢ = 6.25 s* are shown cess toR;, also increases sufficiently th&,, significantly

in Fig. 1. The central crossing poirg,= 1.25Xx 10°%, d = exceeds the experimental value (B5%) for d = 100.

56.8, satisfies those two constraints accurately. When thodence, the acceptable ranged¥alues is probably limited to

values ofe andd together withR = 6.25 s* are used in Eg. 50 to 100, and the corresponding rangeeofalues is limited

[52], one calculate®,, = 6.25+ 2.1 X 107% = 6.27 s*, to 1.2 10°to 3.5 10 The implied values of- and &

which is experimentally indistinguishable from the measurddbm the optimume, d at the central crossing point aff =
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6.25s"arer = 2.00X 10*s=0.2ms, and = 355 rad S". 40 . —— . .

The implied rate of this conformational exchange process is

considerably slower than that estimated by Kennetgl. (25).

However. this is not the only solution consistent with fhve, g N |
>, andR,, data from the A9-H2 proton and is almost cer-

tainly not the whole picture, as detailed below.

Kennedyet al. presented evidence that the magnetizatioif 20 § = 5007
transfer rates from A10-H2 and A11-H2 to their neighboring
protons actually exceed those of A9-H2, despite their much
smaller linewidths. Because both the magnetization transfer 1.0 - e .
rates and th&; rates arise from the same dipolar interactions, S T e 5 = 2507
and depend on similar spectral densities of the same correlation "~ |/ . T T
function, this finding suggests thf for A9-H2 should be less 0.0 1 . — . . . ' '
than or equal tdR; for A10-H2 and A11-H2. In view of Eq. 5o B - (QZBC) 0% 450
[55], this would imply thatR3 for A9-H2 should also be less .
than or equal taR,, for A10-H2 and A11-H2. However, at FIG.2. Curves ofRj;vsfor § = 5007 andd = 250 . Ry} is computed
31°C, the reportedep values for A9-H2, A10-H2, and according to theilsecond term on the right hand side of Eq. [56] using
A11-H2 are, respectively, 6.25, 3.15, and 2.6, Thus, ifR; 13800 (@0 rads™.
for A9-H2 were equal to itR,,, then it would excee®,, for
A10-H2 and A11-H2 by at least 2-fold, contrary to expectation.

This suggests tha,, for A9-H2 has a substantial contribution€XPeriment can still be achieved by including a second muc
from site exchangeR® = 3.1 s, so that itsR? contribution slower site exchange process which acts to increase both f
nNlp — . ’

CPMG .
does not exceed 3.15%sand may be even smaller. Howeverc@lculatedRz ™= and (1/2pw,, values, but in the latter case

we found that no single site exchange process Rith= 3.15 that would only increase the discrepancy between calculats
s can simultaneously fit the experimentaby, and RSP and experimental values. By this criterion, the chaice= 19

data for A9-H2 and still yield so large a valueRE = 3.1s*. MS!S effectively ruled out. ,
We now suppose that there occur two concurrent site ex e now consider how to treat two concurrent site exchanc

change processes, a faster one responsible for the substaRfRfeSSes for AS-H2. The faster process is assumed to

H o __ —1 — -1
contribution toR$® = 3.1 s* and a much slower process thafharacterized bR; = 3.1s7, &, = 5007 rad s*, andr, =
makes a negligible contribution ®:%. For purposes of illus- 7 us, for reasons discussed above. Although these values «
tration, we suppose th& = 3.10 Sff andR¥ = 3.15 s for not a unique solution for the faster process, it is expected th

1 . P .

A9-H2. A rather large standard deviatich of the Larmor any satisfactory solution will have parameters that do not diffe

frequency is required to produce so large a valu¥f Plots from these by more t.han about 2—fo|d.. A second slow_er sit
of R vs 1 for two assumed standard deviatiofs= 250 and exchange process with standard deviat®nand relaxation

500 1, are presented in Fig. 2. Additional calculations (ndiMe€ 72 iS superposed on the faster process in the followin

shown) demonstrate that a valee= 471 rad s *is required WY In Eas. [32] and [40], it is assumed that

to achieveR: = 3.15 s* for any value ofr. The valued = 500

wrad s* corresponds to a standard deviation of 0.5 ppm at 500 (Ae(1)?) = (Aea(1)?) + (Agy(1)?) (58]
MHz, so the span of chemical shift fromé to +68 is 1 ppm.

In fact, 8 cannot be much larger than this, because the magind

mum change in chemical shift of an H2 proton of one adenine

in the ring current of a neighboring adenine is about 1.33 ppm (Ay(0,n4t)? = (Ay,(0, n4t)?) + (Ay,(0, n4t)?) [59]
(25). If we assume thad = 500, then either of twar-values,

namelyr, = 7 us orr, = 19 us, yields the target valu®;, are superpositions of the variances of two independent Gau:
= 3.15 s. However, only the former value is consistent with tHan random processed,¢,(t) and Avy,(t), corresponding to
observedR;™® = 26.3 s* and (1/2\w,, = 7 Av,, = 31.4 the faster site exchange process, akd,(t) and Avy,(t),
rad s . If only this single site exchange process is considerechrresponding to the slower site exchange process. Cons
the choiceR; = 3.1 s%, 8 = 5007 rad s andr, = 7 us, quently, Egs. [45] and [47] will each contain two exponentia
yieldsR;™° = 20.3 s* and (1/2w,, = 20.3 rad S*, which site exchange factors like the last factor shown in each cas
are both smaller than the corresponding experimental valuesg containingd, ande; and the other containind, ande,.
26.3 s* and 31.4 rad S, respectively. However, the choice Also, Eq. [56] will contain two site exchange terms like the
7, = 19 us, with the same choices Bf ands$ yieldsR;™° = second term shown, one containidg and e, and the other
50.2 s* and (1/2Mw,, = 50.3 rad §*, both of which exceed containingd, and e,. By using these augmented equations
their experimental values. In the former case, agreement witith the assumed®; = 3.1 s*, d, = 500 #/R; = 507, and

3.5 4

2.5 - =
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8.67 x 10'rad s*), soR,, = 6.25 s* is determined almost
exclusively byRS = 3.1 s* andRj; = 3.15 s* from the fast
process. An essential point is that the same linewidth { =
10 Hz), spin-echo decayrf™° = 26.3 s*), andR,, = 6.25
s * data for the A9-H2 proton can be fitted by either a single
site-exchange process or two concurrent site exchange pi
cesses, one about 65-fold faster than the other. The model
two concurrent site exchange processes allRjor A9-H2 to
be decreased into or below the rangeRyf values measured
for A10-H2 and A11-H2, and in that regard is more consister
1 with other data. For the fast process, the time constart 7
0 50 100 150 200 us is near the lower end of the rangemfvalues,r, = 10 to

d, 160 us, suggested by Kenneay al. from somewhat different
considerations, and, = 500 = (equivalent to 0.5 ppm) lies
within the range, 0.2 to 1.2 ppm, suggested by those sar
?thors 13). It is notable that such a fast process fits g

a

001 F

¢ 0.001

0.0001

FIG. 3. Curves ofe, versusd, for the slower of two concurrent site
exchange processes that yield the linewidths (HWHM) (142), = 28.6,

31.4, or 34.5rad s (dashed lines as indicated) and the CPMG spin-echo dec PMG
ratesRS™ME = 24.7, 26.3, and 27.9°5 (solid lines as indicated). The middle datum, but noRz™™ or Av,,. Kennedyet al. noted that the

curves in each case apply to the reported experimental valuesA¢d/2y- range of correlation times required to fiv,, was up to 50

31.4 rad s' and R* = 26.3 s, whereas the outer curves apply for thetimes longer than the slowest correlation time consistent wit

experimental values plus or minus one standard deviation. The curves tmé R,, data and attributed that discrepancy to uncertainties
P

yield the three (1/2)w,;, values are generated in the following way. The target . . . .
value of (1/20\w,, (€.9., 31.4 rad 9) is selected. Then the exponent in the lasf’1 and in estimates of the ring current shifts. We suggest he

factor in Eq. [45] is calculated using parameters appropriate for the faster $fgat @ second much slower site exchange process is a me
exchange process, namé® = 3.1 s, d; = (500 7)/R$ = 507, ande, = likely explanation of the discrepancy.

mRe = (7 X 10°%)(3.1) = 2.16 X 10°°. To that is added a second exponent |t js interesting to compare, and 8, for this second slow
of identical form, as indicated in Eq. [58], but evaluated w&h= 3.1 s, a process with the corresponding values obtained by fittin

particular choice ofd, and a trial value ofe,. The resulting “augmented” se . . .
correlation function in Eq. [45] is then computed for a range of time points a,%Vuz, R;, and R,, under the assumption of a single site

Fourier transformed to compute the spectrum. The full width of the spectr/@change process. In brief, = 0.46 ms exceeds = 0.20 ms

at half-height is then determined and compared with the target value. The vaiog the single site exchange process by 2.3-fold, &ne 156

of e, is adjusted and the process is iterated until the computedX@i2) rad s is less thard = 355 rad s* for the single site exchange
matches the target value. Then a new valuel.ois selected and the process rocess by 2.3-fold. Evidently, the fit of a single site exchang
repeated until again the same target value is matched, but now for a different .
(d,, e,) pair. In this way the curve o, vs d, that yields the target linewidth process to _the data yieldsandé values that are not S_O far from
is mapped out. The curves that yield the thR§&"® values are generated in a those obtained for the slower of two concurrent site exchang
similar fashion. Again, the target value (e.g., 26:3) s selected. Then the processes. Hence, the fit of a single site exchange process
exponent in the last factor in Eq. [47] is calculated using parameters apppy,,,, RS™® and R, = R? may be used to identify the
priate for the faster site exchange process, narRgly- 3.1s", d, = (500  hrasence of the slower site exchange process and indic:
m)IR3 = 507, ande; = ;RS = (7 X 107%)(3.1) = 2.15x 10°°. To that is
added a second exponent of identical form, as indicated in Eq. [59], tﬁR”Qh'y the Values of, and &, for _that' .
evaluated withRS = 3.1 s, a particular choice ofl, and a trial value ot,. Finally, the evidence for two site exchange processes wi
The amplitude of the resulting “augmented” correlation function in Eq. [47] iwery different relaxation times, as found for A9-H2, suggest
computed for a range of time points and fitted to a single exponential decay {aat a broad spectrum of site exchange processes might actus
were the experimental data). The bestfit decay cons@fft", is then po ccyrring. However, in the absence of additional informa
determined and compared with the target value. The valegisfadjusted and . ! . . .

the process is iterated until the computed besRfit"® matches the target tlon'_ _those could n_Ot bipﬂglquely determined. In principle
value. The points where the dashed and solid curves cross defind,tre) additional data for eitheR;™™ vs 4t or R,, vs w, would allow

pair that simultaneously yields both the target (M@), andR5™°values. The  much more complete characterization.
crosspoint for the curves that yield (142),, = 31.4 rad s* andR$™° = 26.3
stisd, = 50.3 ande = 1.42 X 1073, Given the valueRS = 3.1 s, these

values correspond to = 4.6 X 10™* s andé = 156 rad s*. PROTOCOLS FOR CHARACTERIZING TWO

CONCURRENT SITE-EXCHANGE PROCESSES

e, = ;R = 2.16 X 10°°, curves ofe, vs d, that satisfy the ~ Accurate characterization of site exchange processes a
total spin-echo constrainR;™¢ = 26.3 s*, and total line- determination oR3 may be accomplished by measuriRg as
width constraintAvy, = 10 Hz, can be calculated. The resulta function of w, over a wide rangel@, 29. An example of
are shown in Fig. 3. The central cross poiet,= 1.42 X results expected for the two concurrent site exchange proces
107 d, = 50.3corresponds ta, = 4.6 X 10 *s = 0.46 ms, discussed above is indicated in Fig. 4, where the two dispe
ands, = 156 rad s'. This slower site exchange process makesons are clearly evident. A potential problem with this ap

a negligible contribution, 1.7& 10° s, to R}, (whenw; = proach is that the theory embodied in Eq. [56], or in its
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single process by fitting either Eg. [56] to tRg, vs w, data or
Eqg. [47] to theR;™° vs 4t data, the expected values Rf,,
s™M andAw,, can all be calculated and compared with the
experimental values. Although good agreement presumab
prevails for the quantity that was initially fitted, some disagree
ment in the case of the other two quantities is expected whe
ever a second site exchange process makes a significant ¢
tribution. When the presence of a second site exchange proc
is detected in this manner, and when 7, for the first process
are known (e.g., from fitting the limiteR,, vs w, or R5™¢ vs
4t data) it might be possible to estimd®g, 8,, andr, from the
same data plus the linewidth and a single measurement of t
third property whose dispersion was not measured Rg.at
w, (sec™) fixed o or R"V® at fixed 4) by selecting trial values oR3,
FIG. 4. R,, vsw, for a continuous Gaussian model with two concurren?ompl‘!tmg the curves af \{S e, that Satl_Sfy the t_Otal linewidth
site exchange processes. The relevant parameters are those estimated fé¥kthird property constraints, performing a grid search arour
A9-H2 proton of the sequence discussed in the text, naRly 3.1s%,d, = the cross point in the,, e, plane for the minimum in thg?
500 7/R; = 507,e, = 7Ry = 2.16X 10 °°, d, = 50.3, ande; = 1.42X  reckoned for all three measured properties for that choice

102 These are employed in Eq. [56], which is augmented to include asecqqgl and then identifying the particular choice RS for which
site exchange factor, as described in the text. The solid line is thRfullThe thét minimumxz takes the lowest value

short (upper) dashed line R;; for the faster process, and the long (lower) . . .
dashed line iRS: for the slower process. The dotted lineR$. Note thatRs An essential point of the present work is that measuremen
for the slower process is significant for small, but practically vanishes at the of R,, over a limited range ob, > 6 or of RS™MC over a limited
angular frequency, = 8.67 X 10" rad s, where the single measurement ofrange of 4 may in favorable cased 9, 29 enable quantitative
Kennedyet al. (25) was made. estimates o andr for a single fast site exchange process, a
well as of R3, but provide little or no information about any
augmented counterpart that includes a second site-exchamgeh slower concurrent site exchange processes that m
process, is valid only whew, > &, 8,, or when any site nevertheless be manifested in the lineshape and in the th
exchange process for which that condition does not hold ispnoperty R;, or R$""°) whose dispersion was not measured. Ir
the fast exchange limit, namely;, < 1.0, or §,7, < 1.0. general, all three kinds of information are required to glean &
Although these conditions are both met in the present exampiaych information as possible about both fast and slow sit
that will not always be the case. A theoretically more robusixchanges.
procedure is to measuRR;™ ¢ as a function of cycle timet4
down to very small timesl1@). There are no restrictions on the
validity of the theory in that case (given the adequacy of the
underlying model). An example of results expected for the two 30
concurrent site exchange processes discussed above is pre-
sented in Fig. 5, where the two dispersions are clearly evident.
In cases where it is not possible to attain sufficiently high 7 20
that R,, bottoms out, or sufficiently shortt&ycle times that =
R5™¢ bottoms out, it will be necessary to make useRof,
5™ Av,,, and NOESY data not only for the nucleus in 1
question, but also for the corresponding nuclei in other base-

sec

Ry

pairs, as done by Kenned al. (25), in order to identify and 5

approximately characterize the site exchange process(es). In R A R

such a caseR; probably cannot be precisely estimated. 107° 10 1073 1072 107!
A question that may arise, wheRy, vs w, is observed to 4t (sec)

bottom Ouctp\'clléth mcr_easmg)l over alimited range_ 0, values_ FIG.5. R;™¢vs 4t for a continuous Gaussian model with two concurrent
or WhenRz Vs 4t is observed tO_ bottom out with o_lgcreasmgite exchange processes. The relevant parameters are those estimated fo
t over a limited range oftdvalues, is whether an additional siteas-H2 proton of the sequence discussed in the text, naRgly 3.1s*,d, =
exchange process remains undetected at either smaller 500 @/R; = 507, e, = 7,R = 2.16 X 10°°, d, = 50.3 ande, = 1.42 X

larger 4. This can readily be ascertained by adopting tﬁé)’? These are employed in Eq. [47], which is augmented to include a secol
CPMG site-exchange factor, as described in the text. Note that untdsdécreased

apparent bottom value of elthall’ or R as the trial value below 3x 10™* s, the dispersion due to the faster relaxation process will no

of R2, which would be valid if no other site exchange process resolved. The singRS™® experiment reported by Kennedy al. (25) was
occurs. Then by using the parametersé inferred for that performed at 8= 107 s.
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APPENDIX A where

Equivalence of Trajectory and Stochastic (Q(1))op = —i8w ()85 + [(a, B, t). [A6]
Operator Approaches

The exponential in the trajectory average in Eq. [8] iblow, we note thatl + Q(t)t/N) = ((1 + Q(t)t/N)™)"™ and
factored by dividing the time interval O tointo an extremely that (L + Q(t)t/N)™) has the same power series f(t) as
large numbeiN of subintervalst/N. As N — , the duration (1 + xt/N)* has forx. Since (1+ xt/N)™ = ((1 +
of these intervals becomes sufficiently short thafQ(t)) is XUN)"™)* = € asN — o, it must then hold that I +

practically constant over each interval. Then, one can writeQ()t/N)™ = €%’ and also that  + Q()t/N)™)™ =
(eQ(t))t/N — eQ(I)t/N, a.SN — o0,

(e hasu@ny = T Y.L Y Y Using this result in Eq. [A5] gives
a B ¢ .
X e*iﬁw(a)t/:lG (t — t/N, t/N) & Gat UN) = (alR). A
af - ’
X @ uBNG | (t — 2t/N, t/N) Inserting this result into Eq. [Al] gives
Y , ce
X e eMING (0, t/N)e "**0"Nfo(g), (e i Tharan(y
[A1] =3 DS S (et v gy
a B ¢
wheref°({) = (f(¢, 0))..s arises from averaging over the (HSNWN OUNL A+ o ibe(OINEO
initial distribution, andG (t, t/N) is the probability that in the X (B|° [Y)CY]- . A n|e¥ PN e PetiNE(g)
Sreines, Thevecifl) o DB e, D S el g,
f(¢, 1)) of fractions of the spins in the different sites evolves
according to [A8]
dF(t) If t > t’, then by definition of the time-ordering operator one
T I'(t)F(t) [A2] can write
QUNGQUIUN — Ta(Q+Q)UN [A9]

for which the formal solution is

- and
F(t+ 7) = Telt @TOR(), [A3]

<e—i f{)dt'sw(n(t'>>>T _ E E <a|-|-esz;01 Q(t—jt/N)t/N|§>f§

where T is the time-ordering operator. Leta| = . ¢

[00...010. .. Pbe arow vector wh a 1 in thex-position and Lo
zeros everywhere else afg) be a column vector wita 1 in =2 2 (a|Teloorot 1018
the B position and zeros everywhere else. Then by definition, a ¢

G,s(t, 7) is thea-element ofF(t + 7) whenF(t) = |B), that _ ¢ grort o
< B( ) ( ) () |B — Z z (TeiodtQ(t))agfg_ [AlO]
@ ¢

Gup(t, 7) = (F(t + 7)), = (a|Te/ " *TV|B). [A4] Use of Eq. [AL0] in Eq. [8] gives Eq. [20] identically.
Essentially identical arguments can be used to show that
In the limit N — o, one hag/N — 0, andG 4(t, t/N) = («a|1

+ T (t)t/N|B). Also, (e 1 I5aUb() g i T2 dtbu(t)y
27 TV (! T " "
e‘i’s“’(“”’NGaB(t, tN) = E E (Tel T arQ)TelsdrQu ))aﬁ 2’ [A11]
a ¢

= (1 —idw(a)t/N)(8,5 + I'(a, B, D)t/N)

=5 .+ (=i ..+ (e, B, )N where Q*(t) is the complex conjugate (not the Hermitian
o F (T180(@) 3 (e, B, 1)) adjoint) of Q(t). Use of Eq. [All] in Eq. [9] provides an

= 8up T (Q(1)4t/N = (a|1 + Q(Dt/N|B), [A5] alternative expression for the spin-echo amplitude in terms ¢
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the stochastic evolution matrix’(«, B, t) and the site- The relevant quantity for the spin-echo decay is the varianc
dependent frequency shiftdw(a). Q*(t) does not generally
commute withQ(t).

Similar arguments also yield ! !
9 y (Ae(2t)?) = <J dt' Se(t’) J dt”8w(t”)>
0 0
(e iAv0n0y — E 2 (Tef?f"(fl)“@t dUQ(t) . Tl linparar dUQ () 2t 2t
a ¢ + f dt' Sw(t’) J dt"Sw(t”)
X Tel Wi areen . . | el dte®) ‘ ‘
t 2t
X TeltdiQ (@) Teloded) o - 2<f dt'dw(t") j dt”6w(t”)>.
0 t

= 3 S [(refieen
a L
The first term is just that in Eq. [B1]. Shifting the origin of time

X Telt dre ) Talt ey m fo [A12] from Ototin the second term reduces it to the first term, whict
is then also given by [B1]. It remains to evaluate the crossteri
t 2t
APPENDIX B -2 J' dt'Sw(t’) J' dt"Sw(t”)
0 t
Evaluation of the Correlation Functions for the Linewidth, t 2t
Simple Spin-Echo Decay, and Decay of the CPMG Even =2 J dt’ f dt"§2e -0
Spin-Echoes in the Gaussian Exchange Model 0 t

The relevant quantity for the linewidth is the variance

(Ap(t)?) = <Jt dt' dw(t') Jt dt”Sw(t”)>

—232[(7)(6”7 _ 1)(_T)(e—2t/r _ e—t/—r)]
—28272(1 + e ¥ — 2g7U7), [B2]

Combining this result with those for the first two terms gives

t t
= f dt’ j dt"(8w(t')5w(t”)) <A€(2t) 2> — 26272[2t/7 _ 3 + 4eft/7 _ ef2t/7':|_ [Bs]
0 0
t t - When Eq. [B3] is expanded for small times up to ortferit
= | dt' | dt's%e i vanishes, and the first nonvanishing term is of ordér)¢.
0 0 Thus, whent < 7, the variance of the net accumulated phas

vanishes, as expected, because in this limit the spins remain
o t , t e (=t their sites without transfer between sites. For each site in whic
=28 dt dt’e a spin remains fixed, the net accumulated phase is expectec
0 0 vanish at the echo, she(2t) = 0 for every spin in this limit.
The derivation o Ay(0, n4t)?) proceeds in several steps.
The total elapsed time from O t@t is subdivided inta equal
intervals of 4, each corresponding to a full cycle of the CPMG
echo sequencet{m—t—t—m—t) subsequent to the initiadr/2
. pulse. During the first and last quarters (of duratipof each
= 2827 f dt' (1 — e ") cycle, the deviation in Larmor frequenéy(t) is entered with
. a positive sign and during the second and third quarters it
entered with a negative sign. The derivation proceeds in se
= 28%7(t — (—7)(e " — 1)) eral steps.
First, we calculatéAy(0, 4t)?) for the first full cycle alone,
=282 tIT— 1+ e V7. [B1] wherein

t
= ZSZJ dt’e ""z(e"" — 1)
0
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t

Avy(0, 4t) Ef

0

2t
dt’ dw(t") —f dt"dw(t")
t

3t 4t
_f dt”’6w(t"’) _I_J’ dt""Sw(t’"’). [B4]

2t 3t
Then

(Av(0, 4)% = (0, t) + S(t, 2t)
+ S(2t, 3t) + S(3t, 4t)
—2C(0, t; t, 2t) — 2C(0, t; 2t, 3t)
+ 2C(0, t; 3t, 4t) + 2C(t, 2t; 2t, 3t)
— 2C(t, 2t; 3t, 4t) — 2C(2t, 3t; 3t, 4t)
(B3]

wherein the self-terms are given by
(m+1)t (m+1)t
S(mt, (m+ 1)t) = j dt'Sw(t’) f dt"aw(t")>
mt mt

and the crossterms by

C(mt, (m+ 1)t; qt, (g + 1)t)

(m+1)t (g+1)t
e J dt'dw(t’) f dt”8w(t”)>.
mt

qt

Upon invoking the stationarity of the random process (wi
respect to a shift in the origin of time) and Eq. [B1], it is foun

that
S(mt, (m+ 1)t) = 2627t/ — 1+ e ¥7] forall m= 0.
[B7]

By using the relation (fot; = t,),

<J 2dt’Sw(t’) J’Adt”Sw(t”)>

ts

t2 ta
— 52 dt/ dtr/e—(t”—l’)lr
t1

t3

_ _8272[67(14%2)/7 _ e*(trtz)/T _ e*(trn)/f + e*(lrtl)/T]

(B8]
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and also the stationarity condition, one finds

C(0,t; t, 2t) = 827%(1 + e 2" — 2e7V7) [B9a]
C(0,t; 2t, 3t) = 8%r%e (1 + e " — 2e7") [B9b]
C(0, t; 3t, 4t) = 827% *"(1 + e " — 2e"") [B9c]
C(t, 2t; 2t, 3t) = 8%73(L + e 2" — 2e7¥7) [B9d]
C(t, 2t; 3t, 4t) = 827%™ ""(1 + e ®"— 2e"") [B9e]

C(2t, 3t; 3t, 4t) = 8%7%(L + e 2" — 2e7""). [BOf]
Finally, after collecting terms,
(Ay(0, 4t)?) = 26%794t/T — 5 + 4e V"
+ 4e—2t/7 _ 4e—3t/7 + e—4l/r:|. [BlO]

In the next step, we write

Avy(0, (n + 1)4t) = Ay(0, n4t) + Ay(n4t, (n + 1)4t)

[B12]
(Ay(0, (n + 1)4t)?) = (Ay(0, n4t)?
+ (Ay(n4t, (n + 1)4t)?
+2(Ay(0, n4)Ay(nat, (n + 1)4t)).  [B13]

Due to stationarity of the Gaussian random process,

(Ay(n4t, (n + 1)4t)%) = (Ay(0, 4t)? [B14]

which is given in [B10]. The other two terms in [B13] are as

g. [B13] and then to evaluatg\y(0, n4t)®) by a stepwise
induction process.

The crossterm in [B13] can be written as a sunmdérms,
in each of whichAy(n4t, (n + 1)4t) is crosscorrelated with
the accumulated phasa,y(m4at, (m + 1)4t), over one par-
ticular cycle in the interval, 0 tm4t. That is,

?et unknown. Our strategy is first to evaluate the crossterm |

n—1

(Ay(0, ndt)Ay(n4t, (n + 1)4t)) = > Tom

m=0

[B15]
where (form < n)
(ma+1)t (m4+2)t
Tom = f dt'dw(t’) — J dt"Sw(t")
mat (m4+1)t

(m4+3)t (m+1)4t
_ J dt//l(sw(t/ll) + J dtIHI Sw(t/”/)
(

m4+2)t (m4+3)t
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(nd+1t (nd+2)t mation, using=p_ X" = (1 — x")/(1 — x), there results
X J dT'8w(T’") — f dT"8w(T") finally
n4t (n4+1)t
asan e 1t (Ay(0, n4t)Ay(n4t, (n + 1)4t))
- J dT"8w(T”) + f dT”8w(T") > = (G(t, DI(e™" — 1))(1 — e ™). [B21]
(n4+2)t (n4+3)t
= [ f(4m, 4n) — f(4m, 4n + 1) — f(4m, 4n + 2) In order to obtain the total variancéAy(0, (n + 1)4t)?),
we proceed stepwise using [B13], [B14], and [B21] for= 1,

+1(4m, 4n + 3)] + [—f(4m + 1, 4n) 2, ... . For simplicity, the quantitif(t, 7) = G(t, 7)/(e"" —
+f(4m+1,4n+ 1) + f(4m+ 1, 4n + 2) 1) is employed.

—f(4m+ 1, 4n + 3)]

n=1:
+[—f(4m+ 2, 4n) + f(4m+ 2, 4n + 1) (Ay(0, 2- 41)2) = 2(Ay(0, 4)2) + 2H(t, 7)(1 — e~4")
+f(4m+ 2, 4n + 2) — f(4m+ 2, 4n + 3)] h= 2

+[f(4m+ 3, 4n) — f(4m + 3, 4n + 1)
—f(4m+ 3, 4n+ 2) + f(4m+ 3, 4n + 3)],

(Ay(0, 3-4t)2) = 3(Ay(0, 4t) + 2H(t, 7)(1 — e ¥
+ 2H(t, 7)(1 — e 247

[B16]
where for k > j), n=k:
(Ay(0, (k + 1)4t)%)
(j+1t (k+1)t
f(j, k) = f dt’' dw(t’) J dt”6w(t”)> K
, u = (k + 1)(Ay(0, 4)2+ > 2H(t, 7)(1 — e ™
— _5272(E—<k—j)t/7 — g (k=j-1tis m
= (k+ 1){Avy(0, 4t)% + k- 2-H(t, ) — 2H(t, 7)
_ e*(k‘*’l*j)t/‘r + e*(k*j)t/T)
- (1 _ e—(k+1)4t/r)
= e*(k*l)t/retlrg(t' T), [Bl?] [(1—(—3‘4‘”) - 1:|
G(t,
where = (k+ 1)(Ay(0, 40 + k- 2-%
g(t, 7) = 827%(1 + e &" — 2e77), [B18] 2-G(t, 7) e
T opr e [B22]

Making use of [B17] and [B18] in [B16] and collecting terms

with common factors yields Equation [B22] in conjunction with [B10] folAy(0, 4t))

and [B20] for G(t, 7) gives the variance of the accumulated

_ /T A—(N—m)4 _ It [2tiT 3t/ 2 )
Tom=9(t, 7)€ (1-er—em+e) phase from 0 tm4t during a CPMG pulse sequence. The final

X (1—e V" — e 2 4 g %) result is presented in Eq. [40] in the main text. The evel
spin-echoes of the CPMG pulse sequence are observett,at
= G(t, r)e” M, B19] n=1,2,....
where APPENDIX C
G(t, 7)=8%*(1+ e " —2e™") Contribution of Rapid Rotational Motions to R,
xel"-(1—e"—e "+ e ¥ The Case when Dipole-Dipole Relaxation Predominates
X (1—e'"— e +e¥), [B20] Penget al. (5, 6) derived an expression for the rate of

relaxation of the rotatingy component of the magnetization of
Upon substituting [B19] into [B15] and performing the suma nucleus (I) due to dipolar interactions with a neighborin
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nucleus S in the presence of a spin-locking field (i.e., circulanyhere
polarized RF power in thry plane.) The frequency) of the

RF power was assumed to be near the Larmor frequangy ( Ho= —f,— 02S, [C4a]
of the | nucleus in the main magnetic fielti{ = H,2), but | ]

very far from that {2) of the S nucleus, which is of a different H; = —wy(l,cosot — Isin wt)

kind. In the limit where the RF power is on resonance wifh — w$(Scoswt — Ssin wt), [C4b]

and the magnitude of the rotating magnetic figil|) of the
RF field is small, so that the precession frequenagy) of the
| nucleus abouH, is very small compared t®’, the result of
Penget al. (5, 6) can be approximated by

wherew is the frequency of circularly polarized RF power, anc
the perturbation Hamiltonian is given generally by

Ho= 2 (=1 °AFCa(t). [C4c]
,yZ,yZ q
= 2ors i 143(@1) + Jo(wf — 09 + 33;(wf)
For the particular case of dipolar interactior33, (
+ 6J (w2 + 6J(w) — 0w}, [C1] 5 1
A0 — a{—3|13z+6(|+5+ IS+)} [C5a]
where AV = 3 o{I,S, +1.S} [C5Db]
ACD = % I.S. [C5c]
Ji(w) =2 Rej dre" 4w (Y%,(Q(0)) Y(Q(1))), [C2] 167\ Y2 Y,o(Q(t)) 1 — 3 cog(t)

0 FO(t) = = = 3 [C6a]

5 r(t) r(t)

. _ . o (8T Y2y, 1 (Q(1) _ *sin 6§ cos g=io®
and Q(t) = (6(t), ¢(1)) is the solid angle of the I-S inter- FEOM) = — 15 rm: r(t)°
nuclear vector in the lab frame. For solutions with an isotropic

equilibrium state, 4(Y%,(€2(0))Y2,(€(t))) is independent of [Ceb]
n (1, 2, 39; henceJ,(w) is also independent af. Equation . 327\ Y2Y, ,(Q(t))  sin0(t)e 2V

[C1] differs from the usual expression f&; relaxation in the FE2() = ( 15 ) rm: () ,
absence of a spin-locking field only by the presencewef

instead of 0 in the first term. [Céc]

For isotropic solutions wherein the reorienting motions are gllhere « = —(3/2)y,ys4, Q(t) = (6(t), $(t)) is the solid
very rapid, the correlation functionmY3,((0))Y({X(t))) decays angle of ther —r s internuclear vector in the lab frame, and
to zero via one or more processes with time constants less thap@f = |r (t) — r4(t)|. In keeping with the usual precedent, it
equal to the slowest rotational relaxation time)(which is still - will be assumed in the following that(t) = r remains
sufficiently short thaty, 7, < 1.0. In this limit,Jy(w,) = J,(0), and essentially constant.
the correspondindg;, is practically identical tdR; in this same  The density matrix expression
limit.

We consider next the case wherein the S spin and the | spin ap
are of the same kind, but experience different environments, so i i [H(t), p(t)] [CT]
their Larmor frequencies are slightly different. In this case, the
RF power is necessarily nearly resonant with both nuclei, so L ) )
the interaction between the S nucleus and the RF power Canﬁot(ar.]sfor_mte d to the first |ntgirﬁcl;t|on representation t.)y Opere
be ignored, as it was in the example treated by Pengl. M9 with €"°* on the left and €"°' on the right to obtain
(5, 6). A brief description of the derivation for this case fol- .

ISoF\)/ivns%.Tms derivation applies when both | and S nuclei have i P [Hi()® + Ho(H)®, p®] [Ccs]

ot
The Hamiltonian (divided byi) is given by

whereinp® = e"*'pe "', Use is made of the definitionl, =

0i/2,] = X, y, z, where theo; are the normalized Pauli
H(t) = Ho + Hy(t) + Hy(t), [C3] matrices, and the relatiors,o, = io,, 0,0, = i0oy, 0,0, =
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io,, 0,0. = oo * ioy) = *0., 0.0, = Fo., and wherep” = U'(t)p®U(t) is the density matrix in the second
g wolozy gilwoli2)ez — 5 @iool 14 gbtain interaction frame. It is also found that
(H(t)) ® = eMotH (t)e ™Mot UTD1.U() = 1, = i(1,Ca(t) + 1,5,(1)) [C134q]
= —wi(l,cosAwt + I,sinAwt) UT(D)S.U(1) = S = i(SCy(t) + SSi(t))  [C13b]
— wi(ScosAwd + SsinAwd), [CI] U1, =il )u() = (I, = il )e"™*  [Clda]

UT(t)(S, £ iS)U(t) = (S, = iS,)e™ ™  [C14b
whereAw, = o} — w andAws = wg — w. A useful simpli- O, =15 ) [ ]

fication results from the following considerations. Because the UT()1,U(t) = 1,Ca(t) — 1,S,(t) [C15a]
reorientational dynamics of the molecules is very rapid, and UT(HS.U(t) = SC.(t) — t C15b
Aw, = w{ — wis rather small, one hasw,7, < 1.0, wherer_ OSUM) =SB ~ SSO [ ]
is the slowest relaxation time among the rotational motions. U (D)(1,S)U(t) = 1,S,C,(1)Cy(t) + 1,5S.(H)S(1)

Since the time-dependent coefficients of the spin operators — 1,SS:(DCy(1) — 1,S,Calt)Sy(1)
appear in integrals over a particular orientation correlation Y e
function (4m(Y%(2(0))Y2((1)))), which vanishes fot = [C164]

7., it is permissible to assume thatyt < 1.0 for all times of UT(t)(1.S.e e u(t) = {I,S, + | S,Ca(1)Co(t)
practical interest, and to set cdsf,t) = 1.0 and sinfw,t) = o * e
0 in Eq. [C9]. If S is a nucleus of the same kind, then also + 1,.5S,(1)S(1) + 1,S,Ca(1)Sy(t) + 1,5S,(1) Cy(t)

Awst, < 1.0, and one may similarly set cdsost = 1.0 and +i(1.SC.(1) + | t) — 1.S.Cu(t
sin(Awst) = 0 in Eq. [C9]. Alternatively, if S is a different = LS + 1551 ~ LS
kind of nucleus, thelws > ?, S0 cosAwst undergoes many — 1,5,5,(t))}e i @imest [16D]

oscillations in atime < (w?) . Consequently, the precession R ot
“frequency” of the S nucleus about the spin-lock field, namely U '(D(1:S.e™=)U(t) = [1.SCa(t) — 1,SS,(1)

wycos Awdt, is effectively averaged to zero beforest is +i(1,5,Ca(t)Cylt) + 1,SCalH) (1)

comparable to 1.0. In that case, tBeandS, terms in Eq. [C9] .

can be ignored, which corresponds to the circumstance treated — — 1,5,Sa(t)Cy(t) — 1,S,Sa(1)Sy(1)) Je ¢ [C174]
by Penget al. (5, 6). However, such terms must be retained in Sin B

the present treatment, so U0 (1.Se™ UM = [LSCu(H) — 1L,SS,(1)

= i(1L,SCa(1)Cu(t) + 1,SS,(1)Cu(t)

()T = o3l — @3S, [C10] ~1,8C0SD ~ LSSOSW)]e™  [C17b]
It is also found that UT(t)(1.S.e™@o9U(t) = [1,S, — 1,S,Ca(t) Co(t)
X ) — 1,SC.(1)S(1) — 1,.§S,(H)Cy(t) — 1.SSi(1)S(1)
(AO)R = a{ ~31Stg (1,S e it =i, SCa(t) + 1,584(1)
+ 1,SCy(t) + 1,S,S,(t)) Je @it [C18]
+ |_s+ei(w?—w9‘)} [Cl1a]

whereC,(t) = coswit, Cy(t) = coswit, S,(t) = sinwit, and

(ACD)® = % oI, S.e”% + 1,57 [c11b] S(t) = sin wit. _ . .
Following Abragam, the solution of Eq. [C12] is approxi-

a —_ o o
(AC2)® — - .S e w0t [Cl1c] mated to second order by
(r) t
The density matrix expression in Eq. [C8] is further trans- . = —J drlh(t)™, [h(t = ), p(t — )11,
formed to the second interaction representation by operating 0
with U'(t) = e @i @S on the left and U(t)

T : . C19

= eihg“ NS on the right to obtain [C19]
whereh(t)” = UT(t){Z, (—1)"AYPECI()}U(t). We as-
sume that the integral converges in a time=< 10r_, where
7. is again the slowest relaxation time of the rotational mo

ap(f)
LA (N (]
= [H0", p™"], [C12]
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tions. We further assume that, owing to the smallness of the
perturbationp(t) is practically unchanged from(0)" at all
times fromt = 0 up to T.. That is, because the rate of
relaxation ofp(t)" is very slow, it is permissible to sg{t —

7) = p(0) for allt — 7 = T.. Then, the initial rate of change
of the density matrix can be written as

ap(f)
at

- —f ch[h(O)“), [h(0— ), pr(0)]].

[C20]

Since the integrand in Eq. [20] vanishes for al&= T, the
upper limit can be extended te without error. Use of Eq.
[C20] facilitates the evaluation of various terms, since all of t
S.(0) andS,(0) factors vanish. Following Abragam, the exlcg])'
pectation value of, “in the second interaction frame” in this
early time regime is found to obey the relation:

d{l,y
dt

0

= tr[ —Jx dr[h(0 — 7)™, [h(0)", I,]1px(0) }. R
0

[C21]

Determination of the coefficients &f,) in [C24] requires the
evaluation of numerous double commutators using Egs. [16]—
[18]. Terms with residual oscillations at frequencie§ ws,
andw! + w2 are ignored, but all terms oscillating at, w?, o/

— wg, and their sums and differences were retained. All final
terms containing the factor, except when part of a time-
dependent phase factor, cancel. The terms that did not survive
either vanished directly or coupled with others to sum to zerb
within the approximation that the rotational motions are ve
fast compared taw}, o}, w! + ©f, andw! — ©f, sowir, < W

+ Jl(w? + Al) + \]1(60|0 - Al)]

3
+ 4 [J(w? + g+ 21) + (0P + g — 21)
+ () + w2+ A) + J(w?) + 02— A))]

3
5 [3(0f + 02+ w)

+ J(w) + w2 — w'l)]}, [C22]

where3,; = o} + o] andA; = o) — 3. If the S nucleus is of
a different kind, so it is greatly off resonance, thehshould
H%e replaced byw;cos@? — w)t = 0 (see discussion following

In the anticipated limit thaw), »f, 3,, andA, are much
smaller thanw and w¢, they can be neglected against those
guantities, but not against —

s, to obtain

1 yiy&h?
=20 5 12J(E) + Jo(Ay)]

+ (1/8)[Jo(w} — we+ X))

3 + oo —
+Jo(w? — wg— Ay]
+(1/2)J(w? —
+ 3 (wf) + 6J(w) + 6J(w?+ w2} [C23]

+ Jo(@f — 03— wg+ Ay)

w2+ o))

quation [C23] reduces to Eq. [C1] when the S nucleus is of
Ixii,ffferent kind, saw; = 0, andw} < w/. In the anticipated limit,
herewir, < 1.0, 3,7, < 1.0, A;7. < 1.0, and { —

1.0, . . .etc. The final result for the coefficient 6f,)|, on the ws)7. < 1.0, all of theJ, spectral densities can be replaced by

right-hand side of Eq. [C21] is

1 oyiyah?
T 40 r®

dd
Ri,

{Z[Jo(El) + Jo(Ay)]

1
+ 8 [Jo(w? — w3+t )+ Jo(w} — wg— )
+ Jo(w} — wg+ Ay + Jo(w? — wg— Ayp]

1 3
5300 = 03+ o) + 5 [0+ o))

(R

Jo(0) to obtain

o 1 YiYE#R®

w40 xS
+6J(wd) + 6J,(w) + 0} [C24]

{5J0(0) + 3J1(w?)

which is practically identical toR3%)° in the same limit.
Explicit expressions were presented previously for the pe

tinent correlation functions (which are independent noy,

namely 4m(Y,(2(0))Y2(2(t))), and the spectral densities

(also independent ofh), namely Jo(w), for molecules that

3
+ Ji(wg — wll)] + 4 [Jl(wg+ 2)

+ \]1(‘1’% - 21) + \]1(‘1’% + Al) + \]1(‘1’% - Al)]

exhibit mean local cylindrical symmetry and undergo bott
collective twisting and bending deformations and also variou
local angular motions1( 2). These correlation functions al-

ways vanish at long times, and their slowest relaxation time

3
+ Z [Jl(‘lh0 + E1) + Jl(w|0_ E1)

invariably the slowest uniform global rotational relaxation time
(7.) of the molecule.
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The Case when Chemical Shift Anisotropy U'(t)(@a®®u() = 21, [C31a]
Relaxation Predominates )
U0 @=“")®u(t) = = (I, = i(1,Cq(t)
We consider next the case of relaxation by the chemical shift Cindt
anisotropy. In this case, +1:S,())e " [C31b]

Equation [C21] must be evaluated using
Ho(D)/h = (—0?s,/2)[ P29 + (-1) fP(t)a

+(=1) fY(H)a-v], [C25] h() @ =UTO{f2@) "+ (-1 f U @")®
+(—1) f9(0) (@ D) R ). [C31c]

where w’ = vy/H,, and &), is the largest component of the i .
traceless part of the CSA tensor in its principal axis fram&ne final result is
Elements of the CSA tensor are here defined according to the

convention of Abraganm? 3, 34. The various quantities in EqQ. R = (112053 [jo(w) + (3/8)(ju(w} + wl)
[C25] are iof = @), [c32]
a® = 2|, where
L6 .
al= ol [C26] jm(®) = 2 Re J dre " S(t) [C33]

0

flo = {@So@l) + \% [D 5P + 9153-2(@1)]} and
[C27]
n jn() = (=)™ F™(0) f™(r)), [C34]
feD = {galo(q)_l) + 7@ [@2112((1)_1) + @11—2((13 _1)]}
v For a solution that exhibits an isotropic equilibrium state, i
[C28] was shown previously thaf(t) = js(t) is independent ofn.
Explicit expressions were obtained for molecules that exhib
whereinn is the asymmetry of the traceless part of the CSkean local cylindrical symmetry and undergo both collective
tensor, and® = (afvy) is the Euler rotation that carries atwisting and bending deformations and also various local at
coordinate frame from coincidence with the laboratory frangular motions 2). We note that Eq. [C13c] of Ref2) contains
to coincidence with the principal axis frame of the CSA tensacan error in the last term, whenrg should be replaced by’
The rotation functions in Egs. [C29] and [C30], namely These correlation functions all vanish at long times and the
slowest relaxation time is invariably the slowest uniform globa
5 a2 o rotational relaxation times() of the molecule.
D (@) =& "Mdn(B)e™, [C29] Because typicallyw; < f, the w; can be ignored in the
ji(w} + }) spectral densities. In the anticipated limit,r, <
are taken in the convention of Ro85) and Tinkham 86), and 1.0, thejo(wy) spectral density can be replaced jaf0) to
the d2,(B) are given by Eq. [C2] of Spiesd) The pertinent °Ptain finally
correlation functions have been evaluated previoug)yfr

rotation functions ([3(®)) in the convention of Wigner37) (RN = (1/2)w387[jo(0) + (3/4ji(wD)] [C37]
and Edmonds38), which are related to those of Ros5)( and
Tinkham @6) by which is identical to R5*")°.
APPENDIX D
D@ 1) = DG(@ ) = Di(D). [C30]

Evaluation of the Gaussian Exchange Model

As before,H, and H,(t) are given by Eqgs. [C3] and [CA4]. Contribution to R,,

Again the system is doubly transformed to the second interac-The following classical derivation is considerably more heu
tion representation wheid, andH,(t) no longer appear and ristic than rigorous. At the start of the experiment prior to the
where 7/2 pulse, the spins exhibit a cylindrically symmetric distribu-
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tion around the lalz, axis. Immediately after the/2 pulse, the The effect of the second term in Eq. [D2], which is neglecte
distribution of spins is cylindrically symmetric around te in [D3] and [D4], is to cause both periodic and random dith
axis of the rotating frame X'y’z’), and the average spinering of the effective frequency abowt. The consequences of
defines thez’ axis, which rotates at the mean Larmor frethis dithering of w, will be considered subsequently. The

quency w,, in the laboratory framey” is taken to be the lalar  instantaneous phase of the spin relative toxhexis (orx’z’
axis, andx’ is taken perpendicular tp' andz’ so as to form pjane) in the rotating frame is

a right-handed coordinate system. The polar coordinates

define the orientation of a spin vector in the rotating fram’e (

y', Z'). The polar angle is the angle between the spin vector

and thez’ axis. The distribution of initiak, values is uniform Avy(t) = arctaim,/m,) = arctar(
over the interval 0 to 2. The probability of observing an initial

Ko value in the intervaldu,, namely P(u,)sin wdw,, is

assumed to exhibit a maximum at small, but nonvanishin\% N .
values ofu herem, andm, are the projections of the spins onto tkie
o

As a consequence of being instantaneously off resonance #d 2" axes, respectively. Becaupeis small, sinu cosv/cos
spin vector will rotate with angular velocit§w(t) abouty’ K = w COSv, and the arctan function can be expanded in-
(ie., z) in the rotating frame. At the same time, the spin] @Y/0r series to lowest order to give
locking field will cause the spin vector to rotate with angular
frequencyw, aroundz’ in the rotating frame. It is assumed that
w; > |dw(t)|, so the rapid rotation by, aroundz’ limits w Ay(t) = p(t)cosv(t) = cowt + v,)
to small values, such that < 1.0. It is imagined that the spin
points along thez, axis of a coordinate framex(, Yy, z) !
attached to the spin. The Euler rotation that carries a coordinate X (“0 + f dt'dw(t)coswit’ + vo) |.  [D6]
frame from coincidence witk’, y’, z' to coincidence wittx, 0
Vs Zsis @ = (vum), and the inverse Euler rotation that orients
the rotating frame in the spin-frame & = (—n —u —v).

When viewed from the spin-frame, the rotating frame appedrsjuations [D3], [D4], and [D6] are predicated on the assumg
to be rotating with angular velociyRy /dt = —8w(t) around tion that w(t) < 1.0, but at thesame time w, >

itsy’ axis,dRZ/dt = —w, around itsz’ axis, anddRxX/dt = dw(t)cot(u(t)). Thus,u(t) needs to be small enough to satisfy
0 around itsx’ axis. The canonical relations between cathe former inequality, but not so small as to violate the latte

sin w coswv
CoS

) , [D5]

tesian and Eulerian angular velocities givé(—w)/dt = inequality, which is required for validity of Egs. [D3], [D4],
cos(—v)(—dw(t)), hence and [D6]. The term in [D6] containindw(t’) is a sum of
Gaussian random variables of zero mean, so it too is a Gau:
du(t) ian random variable of zero mean, can also be regarded as
“ar -~ de(tcosy() [D1] a Gaussian random variable near the peak of its distributio

but its mean does not vanish. However, when averagedigver
this w.cos,t + v,) term actually does vanish. Hence, rela-

and d(—»)/dt = (=)sin(=v)(cos(-u)/sin(=p))(=8w(1)) yely little error should be incurred by assuming that

— @, hence ,COS(,t + v,) is also a Gaussian random variable of zerc
mean. ThenAvy(t) is likewise a Gaussian random variable of

du(t) . zero mean.
dat 17 Bw(t)cot u(t)sin v(t). [B2] The normalized magnetization at the end of a spin-loc

interval of durationt is obtained from Eq. [4] as

The second term in Eq. [D2] is neglected on the basis dhat
is much greater thafw(t). Then,

(M. (Q(1), 1)

—(iwo+Rg)t<eiA7(t)>T

v(t) = v, + oyt [D3] (M.(2(0), 0)))
and — g (0ot RYtg~(Av(112)7/2, [D7]
t
w(t) = wo + f dt'Sw(t')cog wit + v,). [D4] where the symbol denotes an average over the initial polar
0 angles,u,, v,, as well as a trajectory average.
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t t
(Ay(t)?)r = pnicof(w it + v,) + cos(wit + V0)<f dt’' Sw(t")cogd w t" + v,) f dt"dw(t”)coq w, t” + Vo)>
0 0

t t
=C+ 2 coF(wit + vy) f dt’ J dt’coq wt’ + vy)codw t” + v,){(Sw(t’)Sw(t")), [D8]
0 0

where the overbar denotes an average over the initial distrilibi-is a constant independent of the time duration of the spi
tions of w, and v,, and C = u2/2. After substituting lock. Under conditions when equation [D10] is valid, the tota
(w(t")dw(t")) = 8%exp[—(t' — t")/7], the integrals can be rate of exponential decay of the amplitude of the transvers
performed and averages taken over the initial conditions. Aftaragnetization during the spin lock is

considerable tedious algebra, the final result is obtained:

R,, = R2+ R [D13]
(Ay(H)))]2 8272 { t 1 1 (1 - wiTZ>
Y = - A

1+oir? 47 16 4\1+ wir? Under conditions where Eq. [D10] is not valid, one might use

1/1— wir? Eq. [D9] in [D7] to predict the decay in transverse magnetiza
JE e —t/T . . .

+ 8 (1 n w%Tz) cosw,te tion during the spin lock.
1 1. APPENDIX E

— g cos 2wt — 5 sin wte V"

©,T o Gaussian Behavior of Discrete Multi-Site Jump Models
X (HW)} + w4, [D9] at Long Times

We consider a discrete multisite jump model in which al

The oscillatory terms are not as coherent as they appear, dudtgs € = 1, 2,...)exhibit the same intrinsi®; rate. The
the random dithering of the effective, that would result from Mean Larmor frequency is given by Eq. [1] and the variance |
retention of the second term in Eq. [D2]. Indeed, it is likely thef€fined by

averaging the final result over the dither@dwould cause the

oscillatory terms to vanish_ for times sufficiently large thaat _ 82=(0(Q)? — 2= %) - 0d). [E1]

> 1.0. In anycase the oscillatory terms are expected to vanish Q

completely, whenever the spin-lock consists of an even number

O; c%r;t:]gﬁu;n FG)UIZ?]Z’ gi&r:jitrr;? ;Ituglgs \(/)\jengsgu?nned ixvt?%n%r such a model, the variation of the Larmor frequency alon
©). 9 -(6), - (22). a trajectory is a non-Gaussian stationary random process

following that the oscillatory terms can be neglected for one . . :
. Zero mean with autocorrelation function,
reason or another. Then, Eq. [D7] can be rewritten as

(UM (Q(1), 1)) (8w(0)dw(1)) = 8%g(1), [E2]

(M.(0(0), o))y — & e e, [D10]

whereg(t) is the normalized autocorrelation function, g@) =

1.0. For any multisite jump process that obeys the stochastic rul

of kinetics,g(t) will decay monotonically from 1.0 dt= 0 to O at

t = oo. Moreover,g(t) will consist of a sum of exponentially
P=8%7/(4(1 + w?7?) [D11] decaying functions, whose decay constants are the nonvanish

eigenvalues of the stochastic mafibin Egs. [12], [13], [20], and
and [A2]-[A6]. The accumulated phase along a trajectory is given b
Eqg. [31], A¢(t) = [¢ dw(t))dt’, and the variance of the accumu-
lated phase in this case is given by

where

D = (827%(1 + w?7?))
X [1/16+ (1 — 0?t)/(4(1 + w272)] + pn/4. . .
[D12] (Ap(1)?) = <J dt’ Sw(t’) J dt”8w(t”)>

0 0
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t

t
v f
0
t
0 0
t
= zazf dt’
0
t
267 f
0
t
262 f dt’J
0 0
t
0 t

Now, whenT = nt,, wherer, is the longest relaxation time in
g(T) andn is a suitably large fixed integeg(T) effectively
vanishes. Hence, the upper limits of tH& integrals in [E3]
can be replaced byr,. This restricts the upper limit of thet’
integral in the second term in [E3] also i@, but does not
affect that of thedt’ integral in the first term. After defining the
effective relaxation time

dt"(dw(t")dw(t")) th

th

dt"(dw(0)dw(t’ — t"])) of

t

fo
t
dtrf
0

t

dr'g(t’ — )

B
' to
dTg(T)

dTg(T)

t

dTgo(T) |. [E3]

TEJ dTg(T) =J dTy(T), [E4] ¢

0 0 9

[E3] can be rewritten as 10.
11.

(Ap(1)?) = 282 tf—f dt’t'g(t’) |. [E5] 12

0

13.

Because can increase without bound, whereas, remains 14
fixed, at some sufficiently long time & 1) the second term 15
becomes negligible compared to the first, and the variance;g
the accumulated phase becomes proportional tothis limit, 17
the accumulated phase exhibits diffusive behavior and obeys
diffusion equation with diffusion coefficie®.; = (Ad(t)?)/ 18
2t = 8°r. Hence, the distribution of the phase accumulated
over a sufficiently long timet(> ) is given by

20

~Ad(D) Y 2(2Deit)

P(A¢(1))dAd(t) = (272D 1) 2 dA¢(t), 21

[E6]

22
which is manifestly Gaussian. The same qualitative conclu-

2.
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sion could also have been reached by noting that eve
ough the distribution of accumulated phase over a muc
shorter time interval is non-Gaussian, under the central lim
eorem the distribution of the sum of accumulated phase
over a very large number of such intervals, or equivalent!
a single integral over a much longer interval, mus
approach Gaussian behavior. The variance of the accum
lated phase of the discrete multisite model in the long tim
limit, namely 25°rt, will match that of the continuous
Gaussian model in the same limit, namelg?2t (cf. Eq.
1]), provided thed” and r values of the latter are chosen

match the corresponding values of the former.
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